Optimization of hot air drying technology for bamboo shoots by response surface methodology

Autores

  • Qingfeng CAI Shandong Jianzhu University, School of Thermal Engineering, Jinan, China. https://orcid.org/0000-0003-4454-5814
  • Zichun LI Shandong Jianzhu University, School of Thermal Engineering, Jinan, China.
  • Wenguang GENG Qilu University of Technology (Shandong Academy of Sciences), Energy Institute, Jinan, China.
  • Fang LIU Shandong Jianzhu University, School of Thermal Engineering, Jinan, China.
  • Dongling YUAN Qilu University of Technology (Shandong Academy of Sciences), Energy Institute, Jinan, China.
  • Rongfeng SUN Qilu University of Technology (Shandong Academy of Sciences), Energy Institute, Jinan, China.
  • Binguang JIA Shandong Jianzhu University, School of Thermal Engineering, Jinan, China.

DOI:

https://doi.org/10.5327/fst.128422

Palavras-chave:

bamboo shoots, hot air drying, optimization, response surface methodology

Resumo

The drying characteristics of bamboo shoot slices were experimentally studied in a hot air drying system. The individual and combined influence of air temperature, velocity, and slice thickness on the drying process was analyzed. The chromatic aberration and rehydration ratio were used as response indicators, and a 17-group experimental optimization of the drying process was carried out using a response surface methodology. According to the optimization analysis, a hot air temperature of 60.4 °C, an air velocity of 0.4 m/s, and a slice thickness of 0.2 cm were the optimal conditions for hot air drying of bamboo shoots. The predicted rehydration ratio and chromatic aberration of the dried bamboo shoot slices were 10.46 and 12.03, respectively. A validation experiment was conducted under optimum conditions to confirm the applicability of the models. 

Downloads

Não há dados estatísticos.

Referências

Azimi-Nejadian, H., & Hoseini, S. S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), 2921-2930. https://doi.org/10.1007/s00231-019-02633-x

Benseddik, A., Azzi, A., Zidoune, M. N., & Allaf, K. (2018). Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food, 11(4), 220-231. https://doi.org/10.1016/j.eaef.2018.07.003

Bhatt, B. P., Singh, K., & Singh, A. (2005). Nutritional values of some commercial edible bamboo species of the North Eastern Himalayan region, India. Journal of Bamboo and Rattan, 4(2), 111-124. https://doi.org/10.1163/1569159054699317

Bo, W., Cheng, Z., Hu, Y., Boon-Ek, Y., Wongs-Aree, C., & Supapanich, S. (2019). Ultraviolet-C treatment maintains physicochemical quality of water bamboo (Zizania latifolia) shoots during postharvest storage. Postharvest Biology and Technology, 152, 65-72. https://doi.org/10.1016/j.postharvbio.2019.02.017

Dorneles, L. D. N. S., Goneli, A. L. D., Cardoso, C. A. L., da Silva, C. B., Hauth, M. R., Oba, G. C., & Schoeninger, V. (2019). Effect of air temperature and velocity on drying kinetics and essential oil composition of Piper umbellatum L. leaves. Industrial Crops and Products, 142, 111846. https://doi.org/10.1016/j.indcrop.2019.111846

Elboughdiri, N., Ghernaout, D., Kriaa, K., & Jamoussi, B. (2020). Enhancing the extraction of phenolic compounds from Juniper Berries using the box-behnken design. ACS Omega, 5(43), 27990-28000. https://doi.org/10.1021/acsomega.0c03396

Erbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533-541. https://doi.org/10.1016/j.jfoodeng.2008.10.004

Eştürk, O. (2010). Drying properties and quality parameters of dill dried with intermittent and continuous microwave-convective air treatments. Journal of Agricultural Sciences, 16(1), 26-36. https://doi.org/10.1501/Tarimbil_0000001118

Gaikwad, P. S., Pare, A., & Sunil, C. K. (2022). Effect of process parameters of microwave-assisted hot air drying on characteristics of fried black gram papad. Journal of Food Science and Technology, 59(2), 625-635. https://doi.org/10.1007/s13197-021-05050-3

Ghellam, M., Zannou, O., Pashazadeh, H., Galanakis, C. M., Aldawoud, T., Ibrahim, S. A., & Koca, I. (2021). Optimization of osmotic dehydration of autumn olive berries using response surface methodology. Foods, 10(5), 1075. https://doi.org/10.3390/foods10051075

Gong, W., Xiang, Z., Ye, F., & Zhao, G. (2016). Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products, 91, 340-349. https://doi.org/10.1016/j.indcrop.2016.07.023

He, Z., Ye, M., Zhang, Y., Wu, F., Fu, M., Sun, F., & Liu, X. (2021). Effect of seed size and drying temperature on the hot air drying kinetics and quality of Chinese hickory (Carya cathayensis) storage. Journal of Food Processing and Preservation, 45(9), e15488. https://doi.org/10.1111/jfpp.15488

Jia, B., Liu, F., Yuan, S., Li, Z., & Zhang, X. (2020). The effect of alternating ventilation on forced air pre-cooling of cherries. International Journal of Food Engineering, 17(6), 423-433. https://doi.org/10.1515/ijfe-2020-0253

Jia, B.,Yang, L., Zhang, L., Liu, B., Liu, F., & Li, X. (2021). Optimizing structure of baffles on thermal performance of spiral solar air heaters. Solar Energy, 224, 757-764. https://doi.org/10.1016/j.solener.2021.06.043

Kumar, C., Joardder, M. U., Farrell, T. W., Millar, G. J., & Karim, A. (2018). A porous media transport model for apple drying. Biosystems engineering, 176, 12-25. https://doi.org/10.1016/j.biosystemseng.2018.06.021

Li, K., Zhang, Y., Wang, Y. F., El-Kolaly, W., Gao, M., Sun, W., & Li, M. (2021). Effects of drying variables on the characteristic of the hot air drying for gastrodia elata: Experiments and multi-variable model. Energy, 222, 119982. https://doi.org/10.1016/j.energy.2021.119982

Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science & Nutrition, 9(8), 4568-4577. https://doi.org/10.1002/fsn3.2444

Luo, H., Jiang, L., Bao, Y., Wang, L., & Yu, Z. (2013). Effect of Chitosan/Nano‐Chitosan Composite Coating on Browning and Lignification of Fresh‐Cut Z izania latifolia. Journal of Food Quality, 36, 426-431. https://doi.org/10.1111/jfq.12056

Miraei Ashtiani, S. H., Sturm, B., & Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54(4), 915-927. https://doi.org/10.1007/s00231-017-2187-0

Mugodo, K., & Workneh, T. S. (2021). The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon, 7(6), e07182. https://doi.org/10.1016/j.heliyon.2021.e07182

Ndisya, J., Mbuge, D., Kulig, B., Gitau, A., Hensel, O., & Sturm, B. (2020). Hot air drying of purple-speckled Cocoyam (Colocasia esculenta (L.) Schott) slices: Optimisation of drying conditions for improved product quality and energy savings. Thermal Science and Engineering Progress, 18, 100557. https://doi.org/10.1016/j.tsep.2020.100557

Norhaida, H. A. T., Ang, W. L., Kismurtono, M., & Siti, M. T. (2020). Effect of air temperature and velocity on the drying characteristics and product quality of Clinacanthus nutans in heat pump dryer. In IOP Conference Series: Earth and Environmental Science (v. 462, No. 1, p. 012052). IOP Publishing.

Omolola, A. O., Kapila, P. F., & Silungwe, H. M. (2019). Mathematical modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Information Processing in Agriculture, 6(1), 109-115. https://doi.org/10.1016/j.inpa.2018.08.003

Park, E. J., & Jhon, D. Y. (2010). The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT-Food Science and Technology, 43(4), 655-659. https://doi.org/10.1016/j.lwt.2009.11.005

Pavkov, I., Radojčin, M., Stamenković, Z., Kešelj, K., Tylewicz, U., Sipos, P., Ponjičan, O., & Sedlar, A. (2021). Effects of osmotic dehydration on the hot air drying of apricot halves: drying kinetics, mass transfer, and shrinkage. Processes, 9(2), 202. https://doi.org/10.3390/pr9020202

Persic, M., Mikulic-Petkovsek, M., Slatnar, A., & Veberic, R. (2017). Chemical composition of apple fruit, juice and pomace and the correlation between phenolic content, enzymatic activity and browning. LWT-Food Science and Technology, 82, 23-31. https://doi.org/10.1016/j.lwt.2017.04.017

Rai, P., Pandey, A., & Pandey, A. (2019). Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. International Journal of Hydrogen Energy, 44(47), 25505-25513. https://doi.org/10.1016/j.ijhydene.2019.07.168

Rajkumar, P., Kulanthaisami, S., Raghavan, G. S. V., Gariépy, Y., & Orsat, V. (2007). Drying kinetics of tomato slices in vacuum assisted solar and open sun drying methods. Drying Technology, 25(7-8), 1349-1357. https://doi.org/10.1080/07373930701438931

Stamenković, Z., Pavkov, I., Radojčin, M., Tepić Horecki, A., Kešelj, K., Bursać Kovačević, D., & Putnik, P. (2019). Convective drying of fresh and frozen raspberries and change of their physical and nutritive properties. Foods, 8(7), 251. https://doi.org/10.3390/foods8070251

Takougnadi, E., Boroze, T. E. T., & Azouma, O. Y. (2020). Effects of drying conditions on energy consumption and the nutritional and organoleptic quality of dried bananas. Journal of Food Engineering, 268, 109747. https://doi.org/10.1016/j.jfoodeng.2019.109747

Wang, H., Liu, D., Yu, H., Wang, D., & Li, J. (2019). Optimization of microwave coupled hot air drying for Chinese yam using response surface methodology. Processes, 7(10), 745. https://doi.org/10.3390/pr7100745

Wang, J., Wu, G., Wang, Z., Shu, B., Li, L., Zhang, R., Huang, F., Dong, L., Zhang, M., & Suo, C. (2020). The influence of processing conditions on kinetics, anthocyanin profile and antioxidant activity of purple sweet potato subjected to hot air drying. Journal of Food Process Engineering, 43(9), e13472. https://doi.org/10.1111/jfpe.13472

Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. https://doi.org/10.1016/j.jfoodeng.2007.03.030

Zahoor, I., & Khan, M. A. (2021). Microwave assisted fluidized bed drying of red bell pepper: Drying kinetics and optimization of process conditions using statistical models and response surface methodology. Scientia Horticulturae, 286, 110209. https://doi.org/10.1016/j.scienta.2021.110209

Zeng, Z., Chen, M., Wang, X., Wu, W., Zheng, Z., Hu, Z., & Ma, B. (2020). Modeling and optimization for konjac vacuum drying based on response surface methodology (RSM) and artificial neural network (ANN). Processes, 8(11), 1430. https://doi.org/10.3390/pr8111430

Downloads

Publicado

2023-06-19

Como Citar

CAI, Q., LI, Z., GENG, W., LIU, F., YUAN, D., SUN, R., & JIA, B. (2023). Optimization of hot air drying technology for bamboo shoots by response surface methodology. Food Science and Technology, 43. https://doi.org/10.5327/fst.128422

Edição

Seção

Artigos Originais