Effects of different dehydration methods on the color, nutritional, and functional characteristics of okara

Autores

DOI:

https://doi.org/10.5327/fst.00410%20

Palavras-chave:

soybean by-products, drying, functional properties, nutritional composition, okara

Resumo

Okara, a by-product of soybean (Glycine max L.) processing, is rich in nutrients, including proteins, fibers, lipids, minerals, and bioactive compounds. However, its high moisture content (70–80%) makes it susceptible  to spoilage. This study investigated the effects of four drying methods (using equipment such as a conventional electric oven, a microwave oven, a forced air convection oven, and a homemade dehydrator) on the color, microbiological safety, nutritional composition, percentage yield, and technological properties of dehydrated okaras. The following analyses were performed: yield, microbiological (Escherichia coli and Salmonella sp.,) characteristics, proximate composition, fatty acid profile, La*b* color, water absorption index (WAI), oil absorption index (OAI), and emulsifying activity (EA). No pathogenic microorganisms were detected. Microwave drying resulted in the lowest yield (4.2%) but produced the highest protein concentration (38.4%), making it ideal for enhancing the nutritional value of food products. Conventional oven and microwave drying showed the highest EA (47.1% and 46.5%, respectively), indicating their suitability for emulsified product applications. Conversely, homemade dehydrator was suitable for gel and bakery product formulations (WAI, 6.2%). Additionally, homemade dehydrator caused minimal color changes (L, 78.4; a*, 4.5; b*, 25.0), making it preferable for applications in which the color retention in okara-enriched food products is crucial.

Downloads

Não há dados estatísticos.

Referências

Ahmed, H., Satheesh, H. N., & Dibaba, K. (2018). Functional, physical and sensory properties of cookies prepared from okara, red teff and wheat flours. Croatian Journal of Food and Science and Technology, 10(1), 23-32. https://doi.org/10.17508/CJFST.2018.10.1.05

Bastos, A. (2021). Pesquisa viabiliza o uso de subproduto da soja como ingrediente para alimentos plant-based. Embrapa. Retrieved from https://www.embrapa.br/busca-de-noticias/-/noticia/65266022/pesquisa-viabiliza-uso-de-subproduto-da-soja-como-ingrediente-para-alimentos-plant-based

Berghout, J. A. M., Boom, R. M., & Van Der Goot, A. J. (2014). The potential of aqueous fractionation of lupin seeds for high-protein foods. Food Chemistry, 15(159), 64-70. https://doi.org/10.1016/j.foodchem.2014.02.166

Brasil (2012). Agência Nacional de Vigilância Sanitária. Dispõe sobre o Regulamento Técnico sobre Informação Nutricional Complementar (RDC n. 54, de 12 de novembro de 2012). Diário Oficial da República Federativa do Brasil.

Brasil (2022). Agência Nacional de Vigilância Sanitária. Estabelece os padrões microbiológicos dos alimentos (Instrução Normativa n. 161, de 6 de julho de 2022). Diário Oficial da República Federativa do Brasil.

Brasil (2023). Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos: safra 2022/23 (versão 9). Retrieved from https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

Cabezas, A., De la Fuente, J., Dıaz, M. T., Bermejo-Poza, R., del Olmo, D. M., Mateos, J., Llanes, N., & Jimeno, V. (2023). Effect of the inclusion of rumen-protected amino acids in the diet of growing beef cattle on animal performance and meat quality. Frontiers in Animal Science, 4, 1269775. https://doi.org/10.3389/fanim.2023.1269775

Cantuária, C. C., Ribeiro, S. C. A., Ribeiro, C. F. A., Pakr, K. J., & Araúdo, A. F. (2008). Perfil sensorial de pães de forma enriquecidos com okara. Revista Brasileira de Produtos Agroindustriais, 10(2), 111-120. https://doi.org/10.15871/1517-8595/rbpa.v10n2p111-120

Chandra, S., & Samsher, L. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8, 4849-4852. https://doi.org/10.5897/AJAR2013.6905

Chen, M., Lu, J., Liu, F., Nsor-Atindana, J., Xu, F., Goff, H. D., Ma, J., & Zhong, F. (2019). Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 88, 247-255. https://doi.org/10.1016/j.foodhyd.2018.09.003

Dala-Paula, M. B., Gozzi, P. W., Kringel, H. D., Peloso, F. E., & Custódio, B. F. (2021a). Água. In: M. B. Dala-Paula (Ed.), Química & bioquímica de alimentos (pp. 15-16). Universidade Federal de Alfenas.

Dala-Paula, M. B., Gozzi, P. W., Kringel, H. D., Peloso, F. E., & Custódio, B. F. (2021b). Lipídeos. In: M. B. Dala-Paula (Ed.), Química & bioquímica de alimentos (pp. 69-106). Universidade Federal de Alfenas.

Dala-Paula, M. B., Gozzi, P. W., Kringel, H. D., Peloso, F. E., & Custódio, B. F. (2021c). Reações de escurecimento não enzimático em alimentos. In: M. B. Dala-Paula (Ed.), Química & bioquímica de alimentos (pp. 228-235). Universidade Federal de Alfenas.

Devide, C. J., Pedrão, R. M., Seibel, F. N., & Assis, R. Q. (2019). Incorporação de okara na formulação de hambúrguer de frango: Influências nas características físicas e químicas. Revista Brasileira de Tecnologia Agroindustrial, 13(1), 2752-2766. https://doi.org/10.3895/rbta.v13n1.6952

Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological examination of foods (4ª ed.). American Public Health Association.

Guimarães, R. M., Ida, E. I., Falcão, H. G., Rezende, T. A. M., Silva, J. S., Alves, C. C. F., Silva, M. A. P., & Egea, M. B. (2020). Evaluating technological quality of okara flours obtained by different drying processes. LWT - Food Science and Technology, 123, 1-8. https://doi.org/10.1016/j.lwt.2020.109062

Guimarães, R. M., Oliveira, D. E. C., Resende, O., Silva, J. S., Rezende, T. A. M., & Egea, M. B. (2018). Thermodynamic properties and drying kinetics of ‘okara’. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 418-423. https://doi.org/10.1590/1807-1929/agriambi.v22n6p418-423

Hirakuri, M. H., & Lazzarotto, J. J. (2014). O agronegócio da soja nos contextos mundial e brasileiro. Embrapa Soja. Retrieved from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/990000/o-agronegocio-da-soja-nos-contextos-mundial-e-brasileiro

Horwitz, W., & Latimer, G. W. (2006). Official methods of analysis of AOAC International (18ª ed.). AOAC International.

Izar, M. C. O., Lottenberg, A. M., Giraldez, V. Z. R., Santos Filho, R. D. S., Machado, R. M., Bertolami, A., Assad, M. H. V., Saraiva, J. F. K., Faludi, A. A., Moreira, A. S. B., Geloneze, B., Magnoni, C. D., Scherr, C., Amaral, C. K., Araújo, D. B., Cintra, D. E. C., Nakandakare, E. R., ... & Machado, V. A. (2021). Posicionamento sobre o consumo de gorduras e saúde cardiovascular. Arquivos Brasileiros de Cardiologia, 116(1), 160-212. https://doi.org/10.36660/abc.20201340

Kamble, D. B., & Rani, S. (2020). Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): a review. Legume Science, 2(1), e32. https://doi.org/10.1002/leg3.32

Kamble, D. B., Singh, R., Rani, S., & Pratap, D. (2019). Physicochemical properties, in vitro digestibility and structural attributes of okara-enriched functional pasta. Journal of Food Processing and Preservation, 43(12), 1-9. https://doi.org/10.1111/jfpp.14232

Leite Júnior, B. R. C. L., Oliveira, P. M., Castro, R. L. E., Lamas, J. M. N., & Martins, E. M. F. (2013). Desenvolvimento e caracterização de doce de goiaba cremoso adicionado de farinha de okara. Revista Vértices, 15(2), 25-37. https://doi.org/10.5935/1809-2667.20130016

Lee, M. R. F., Tweed, J. K. S., Kim, E. J., & Scollan, N. D. (2012). Beef, chicken and lamb fatty acid analysis: a simplified direct bimethylation procedure using freeze-dried material. Meat Science, 92(4), 863-866.

Li, B., Yang, W., Nie, Y., Kang, F. H. Goff, D., & Cui S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48-56. https://doi.org/10.1016/j.foodhyd.2019.02.042

Lin, N., Liu, B., Liu, Z., & Qi, T. (2020). Effects of different drying methods on the structures and functional properties of phosphorylated Antarctic krill protein. Journal of Food Science, 85(11), 3690-3699. https:// doi.org/10.1111/1750-3841.15503

Loi, C. C., Eyres, G. T., & Birch, E. J. (2019). Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion. Food Research International, 120, 83-91. https://doi.org/10.1016/j.foodres.2019.02.026

Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Suárez, M. J. (2010). Isolation and characterisation of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod. Food Chemistry, 122(1), 339-345. https://doi.org/10.1016/j.foodchem.2010.02.042

Mozafarpour, R., Koocheki, A., Milani, E., & Varidi, M. (2019). Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 93, 361-373. https://doi.org/10.1016/j.foodhyd.2019.02.036

Muliterno, M. M., Rodrigues, D., Lima, F. S., Ida, E. I., & Kurozawa, L. E. (2017). Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT - Food Science and Technology, 75, 512-519. https://doi.org/10.1016/j.lwt.2016.09.031

Ostermann-Porcel, M. V., Rinaldoni, A. N., Rodriguez-Furlán, L. T., & Mercedes, E C. (2017). Quality assessment of dried okara as a source of production of gluten-free flour. Journal of the Science of Food and Agriculture, 97(9), 2934-2941. https://doi.org/10.1002/jsfa.8131

Perussello, C. A., Mariani, V. C., & Amarante, Á. C. C. (2012). Numerical and experimental analysis of the heat and mass transfer during okara drying. Applied Thermal Engineering, 48, 325-331. https://doi.org/10.1016/j.applthermaleng.2012.04.025

Pinto, D. D. J., & Castro, P. S. (2008). Estudo preliminar da secagem do okara (resíduo do extrato aquoso de soja) para inativação dos fatores antinutricionais e conservação. Brazilian Journal Food Technology, 12, 125-131. Retrieved from http://bjft.ital.sp.gov.br/especiais/especial_2009_2/v12ne_t0246.pdf

Priulli, E. (2020). Aproveitamento do resíduo do extrato hidrossolúvel de soja (okara) na elaboração de tapioca (Dissertação de mestrado, Universidade Federal do Tocantins).

R Core Team (2022). R: a language and environment for statistical computing [Software]. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org

Seibel, N. F. & Beléia, A. D. P. (2009). Características químicas e funcionalidade tecnológica de ingredientes de soja [Glycine Max (L.) Merrill]: carboidratos e proteínas. Brazilian Journal of Food Technology, 12(2), 113-122. https://doi.org/10.4260/BJFT20093607

Taneja, A., Ye, A., & Singh, H. (2015). Influence of protein concentration on the stability of oil-in-water emulsions formed with aggregated milk proteins during spray drying. Dairy Science and Technology, 95, 279-293. https://doi.org/10.1007/s13594-014-0208-z

Vong, W. C., & Liu, S. Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology, 52, 139-147. https://doi.org/10.1016/j.tifs.2016.04.011

Yoshida, B. Y., Pereira, D. G., Castilho, S. P. G., & Seibel, N. F. (2014). Produção e caracterização de cookies contendo farinha de okara. Alimentos e Nutrição, 25(1), 49-54.

Downloads

Publicado

2025-03-03

Como Citar

SILVEIRA, B. M. G. da, BERMEJO-POZA, R., VÁZQUEZ, J. de la F., RAMIRES, T. G., & PONSANO, E. H. G. (2025). Effects of different dehydration methods on the color, nutritional, and functional characteristics of okara. Food Science and Technology, 45. https://doi.org/10.5327/fst.00410

Edição

Seção

Artigos Originais