Molecular analysis of Kefiran exopolysaccharide: Interactions with vitamins, amino acids, monosaccharides, lipids, and Toll-like receptor 4
DOI:
https://doi.org/10.5327/fst.00393Palavras-chave:
Kefir, Kefiran, exopolysaccharide, nutrients, molecular dynamics, TL receptorsResumo
Kefir grains are composed of a consortium of microorganisms, which are enveloped in a matrix of exopolysaccharides called kefiran, with an almost equal proportion of D-glucose and D-galactose, produced by lactic acid bacteria of the genus Lactobacillus. Associated with a diversity of proteins and lipids, kefiran supports the symbiotic cellular structure and protects it against external influences, such as nutrient deficiencies, dehydration, bacteriophages, toxicity, and osmosis. Kefiran has attracted the attention of the scientific community due to its functional properties, and its role in modulating the immune system is the most studied and has potential for exploration. However, the biopolymer has a complex molecular structure and its physical and chemical properties still require investigation. The present study addresses the interaction between the kefiran tetramer and various compounds: trivalerate triacylglycerol; monosaccharide — D-glucose; fat-soluble vitamins such as vitamin A — retinol and vitamin D — cholecalciferol; water-soluble vitamins such as vitamin B2 — riboflavin and vitamin C — ascorbic acid; and amino acids such as positive side chain histidine, negative aspartate, polar asparagine, and hydrophobic isoleucine. From its molecular properties and experimental results from the literature, we discuss the role of kefiran in acting similarly to the carbohydrate portion of lipopolysaccharides in the Toll-like receptor and myeloid differentiation factor 2 system, activating the immune system.
Downloads
Referências
Abraham, A. G., & De Antoni, G. L. (1999). Characterization of kefir grains grown in cows’ milk and in soya milk. Journal of Dairy Research, 66(2), 327-333. https://doi.org/10.1017/s0022029999003490
Ahmed, Z., Wang, Y., Ahmad, A., Khan, S. T., Nisa, M., Ahmad, H., & Afreen, A. (2013). Kefir and health: a contemporary perspective. Critical Reviews in Food Science and Nutrition, 53(5), 422-434. https://doi.org/10.1080/10408398.2010.540360
Bahari, A., Shahabi-Ghahfarrokhi, I., & Koolivand, D. (2020). Kefiran ameliorates malfunctions in primary and functional immune cells caused by lipopolysaccharides. International Journal of Biological Macromolecules, 165(Part A), 619-624.
Barcelos, M. C. S., Vespermann, K. A. C., Pelissari, F. M., & Molina, G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791
Borges, A., de Oliveira, I. P., Lescano, C. H., Parreira, R. L. T., Orenha, R. P., & da Silva de Laurentiz, R. (2023). Molecular interaction analysis of the lignans from Piper cubeba in complex with Haemonchus contortus phosphomethyltransferase. Veterinary Parasitology, 321, 110001. https://doi.org/10.1016/j.vetpar.2023.110001
da Silva, M. de S. B., & Okura, M. H. (2021). Kefir-based products developed and studied in Brazil. Research, Society and Development, 10(7), e19010716491. https://doi.org/10.33448/rsd-v10i7.16491
de Magalhães, C. S., Almeida, D. M., Barbosa, H. J. C., & Dardenne, L. E. (2014). A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Information Sciences, 289, 206-224. https://doi.org/10.1016/j.ins.2014.08.002
de Oliveira, I. P., & Martínez, L. (2019). The shift in urea orientation at protein surfaces at low pH is compatible with a direct mechanism of protein denaturation. Physical Chemistry Chemical Physics, 22(1), 354-367. https://doi.org/10.1039/c9cp05196a
Ganatsios, V., Nigam, P., Plessas, S., & Terpou, A. (2021). Kefir as a functional beverage gaining momentum towards its health promoting attributes. Beverages, 7(3), 48. https://doi.org/10.3390/beverages7030048
Gentry, B., Cazón, P., & O’Brien, K. (2023). A comprehensive review of the production, beneficial properties, and applications of kefiran, the kefir grain exopolysaccharide. International Dairy Journal, 144, 105691. https://doi.org/10.1016/j.idairyj.2023.105691
Gomes, F. O., Silva, M. C. M., Sousa, P. B., Freitas, T. K. T., & Silva, D. J. S. (2020). Avaliação físico-química de uma bebida à base de kefir saborizada com pequi. Brazilian Journal of Development, 6(3), 10755-10762. https://doi.org/10.34117/bjdv6n3-084
González-Orozco, B. D., García-Cano, I., Jiménez-Flores, R., & Alvárez, V. B. (2022). Invited review: Milk kefir microbiota-Direct and indirect antimicrobial effects. Journal of Dairy Science, 105(5), 3703-3715. https://doi.org/10.3168/jds.2021-21382
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
Ibacache-Quiroga, C., González-Pizarro, K., Charifeh, M., Canales, C., Díaz-Viciedo, R., Schmachtenberg, O., & Dinamarca, M. A. (2022). Metagenomic and functional characterization of two chilean kefir beverages reveals a dairy beverage containing active enzymes, short-chain fatty acids, microbial β-amyloids, and bio-film inhibitors. Foods, 11(7), 900. https://doi.org/10.3390/foods11070900
Kalka-Moll, W. M., Tzianabos, A. O., Bryant, P. W., Niemeyer, M., Ploegh, H. L., & Kasper, D. L. (2002). Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. Journal of Immunology, 169(11), 6149-6153. https://doi.org/10.4049/jimmunol.169.11.6149
Kooiman, P. (1968). The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydrate Research, 7(2), 200-211. https://doi.org/10.1016/S0008-6215(00)81138-6
Lescano, C. H., Freitas de Lima, F., Cardoso, C. A. L., Vieira, S. C. H., Mónica, F. Z., & Pires de Oliveira, I. (2021). Rutin present in Alibertia edulis extract acts on human platelet aggregation through inhibition of cyclooxygenase/thromboxane. Food & Function, 12(2), 802-814. https://doi.org/10.1039/d0fo02276d
Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157-2164. https://doi.org/10.1002/jcc.21224
Martínez, L., & Shimizu, S. (2017). Molecular interpretation of preferential interactions in protein solvation: a solvent-shell perspective by means of minimum-distance distribution functions. Journal of Chemical Theory and Computation, 13(12), 6358-6372. https://doi.org/10.1021/acs.jctc.7b00599
Micheli, L., Uccelletti, D., Palleschi, C., & Crescenzi, V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology, 53(1), 69-74. https://doi.org/10.1007/s002530051616
Mukai, T., Toba, T., Itoh, T., & Adachi, S. (1990). Structural investigation of the capsular polysaccharide from Lactobacillus kefiranofaciens K1. Carbohydrate Research, 204, 227-232. https://doi.org/10.1016/0008-6215(90)84039-w
Nauss, J. L. (2000). CHARMm: Chemistry at Harvard Molecular Mechanics Workshop.
Nelson, M. T. (1995). NAMD: A Parallel, Object-oriented Molecular Dynamics Program.
Oliveira, I. P., & Caires, A. R. L. (2019). Molecular arrangement in diesel/biodiesel blends: A Molecular Dynamics simulation analysis. Renewable Energy, 140, 203-211. https://doi.org/10.1016/j.renene.2019.03.061
Park, B. S., Song, D. H., Kim, H. M., Choi, B.-S., Lee, H., & Lee, J.-O. (2009a). The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 458(7242), 1191-1195. https://doi.org/10.1038/nature07830
Park, B. S., Song, D. H., Kim, H. M., & Lee, J.-O. (2009b). Crystal structure of the human TLR4-human MD-2-E.coli LPS Ra complex. https://doi.org/10.2210/pdb3FXI/pdb
Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Peluzio, M. do C. G. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews, 30(1), 82-96. https://doi.org/10.1017/s0954422416000275
Shankar, T., Palpperumal, S., Kathiresan, D., Sankaralingam, S., Balachandran, C., Baskar, K., Hashem, A., Alqarawi, A. A., & Abd Allah, E. F. (2021). Biomedical and therapeutic potential of exopolysaccharides by isolated from sauerkraut: Screening and characterization. Saudi Journal of Biological Sciences, 28(5), 2943-2950. https://doi.org/10.1016/j.sjbs.2021.02.030
Sperotto, L., Oliveira, E. V., Ferreira, F. A. T., Santos, F. B., Silva, H. X. B. N., Machado, K. R., P., L. H., Santos, R. C., Moreira, R. A., Azevedo, T. C. R., Camargo, W., & Matanna, P. (2017). Desenvolvimento de queijo cremoso com kefir: análises sensoriais e físico-químicas. Revista Eletrônica Biociências, Biotecnologia e Saúde, (18), 60-68. Retrieved from https://seer.utp.br/index.php/GR1/article/view/1494/1261
Tan, K.-X., Chamundeswari, V. N., & Loo, S. C. J. (2020). Prospects of kefiran as a food-derived biopolymer for agri-food and biomedical applications. RSC Advances, 10(42), 25339-25351. https://doi.org/10.1039/d0ra02810j
Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., & Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36(5-6), 254-260. https://doi.org/10.1016/j.cyto.2007.01.003
Wang, B., Song, Q., Zhao, F., Han, Y., & Zhou, Z. (2019). Production optimization, partial characterization and properties of an exopolysaccharide from Lactobacillus sakei L3. International Journal of Biological Macromolecules, 141, 21-28. https://doi.org/10.1016/j.ijbiomac.2019.08.241
Zottmann da Silva, I., & Weschenfelder, S. (2020). Caracterização físico-química e sensorial em queijo de kefir com e sem condimentos. Revista do Instituto de Laticínios Cândido Tostes, 75(2), 83-93. https://doi.org/10.14295/2238-6416.v75i2.795
孝夫向井, 隆宏戸羽, 敞敏伊藤, & 達足立 (1988). ケフィール粒由来,ケフィランの構造における微視的不均一性. 日本畜産学会報, 59(2), 167-176. https://doi.org/10.2508/chikusan.59.167