Modified atmosphere affects glucosinolate metabolism during postharvest storage of broccoli
DOI:
https://doi.org/10.5327/fst.27523%20Palavras-chave:
Brassica oleracea, nutraceuticals, postharvest, modified atmosphere, gene expressionResumo
Broccoli is a vegetable with a growing consumer demand worldwide due to its important nutritional properties, including high amounts of glucosinolates. However, this vegetable has a short postharvest life and quickly loses its organoleptic and nutritional quality. Modified atmosphere is one of the numerous methodologies used to delay deterioration during postharvest storage of broccoli heads. In this study, the effect of a modified atmosphere during postharvest storage of broccoli on glucosinolate metabolism was evaluated. Five glucosinolates were identified by using a UPLC system coupled to a mass spectrometer. We detected one aliphatic glucosinolate and four indolic glucosinolates, and their concentration was found to decrease during storage. The decrease in content was less marked, and in some cases, an increased level was observed in the treated samples. Moreover, the treatment made it possible to maintain higher expression (analyzed by real-time quantitative PCR) of genes linked to glucosinolate biosynthesis. We also detected an increased expression of some genes related to indolic glucosinolate biosynthesis. Overall, storage of broccoli in modified atmospheres allowed for maintaining better visual quality and higher levels of glucosinolates.
Downloads
Referências
Ahlawat, Y., Li, S., Timilsena, P., Pliakoni, E., Brecht, J., & Liu, T. (2022). Identification of senescence-associated genes in broccoli (Brassica oleracea) following harvest. Postharvest Biology and Technology, 183, 111729. https://doi.org/10.1016/j.postharvbio.2021.111729
Aiamla-or, S., Kaewsuksaeng, S., Shigyo, M., & Yamauchi, N. (2010). Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chemistry, 120(3), 645-651. https://doi.org/10.1016/j.foodchem.2009.10.056
Banerjee, A., Rai, A., Penna, S., & Variyar, P. (2016). Aliphatic glucosinolate synthesis and gene expression changes in gamma-irradiated cabbage. Food Chemistry, 209, 99-103. http://doi.org/10.1016/j.foodchem.2016.04.022
Blažević, I., Montaut, S., Burčul, F., Olsend, C., Burowe, M., Rollin, P., & Agerbirk, N. (2020). Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry, 169, 112100. https://doi.org/10.1016/j.phytochem.2019.112100
Casajús, V., Civello, P., Martínez, G., Howe, K., Fish, T., Yang, Y., Thannhauser, T., Li, L., & Gómez Lobato, M. (2021). Effect of continuous white light illumination on glucosinolate metabolism during postharvest storage of broccoli. LWT-Food Science and Technology, 145, 111302. https://doi.org/10.1016/j.lwt.2021.111302
Casajús, V., Demkura, P., Civello, P., Gómez Lobato, M., & Martinez, G. (2020). Harvesting at different time-points of day affects glucosinolate metabolism during postharvest storage of broccoli. Food Research International, 136, 109529. https://doi.org/10.1016/j.foodres.2020.109529
Cheng, F., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., Li, P., Hua, W., & Wang, X. (2011). BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biology, 11, 136. https://doi.org/10.1186/1471-2229-11-136
Cramer, G., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163
Duarte-Sierra, A., Forney, C., Michaud, D., Angers, P., & Arul, J. (2017). Influence of hormetic heat treatment on quality and phytochemical compounds of broccoli florets during storage. Postharvest Biology and Technology, 128, 44-53. https://doi.org/10.1016/j.postharvbio.2017.01.017
Eason, J., Patel, D., Ryan, D., Page, B., Hedderley, D., Watson, L., & West, P. (2007). Controlled atmosphere treatment of broccoli after harvest delays senescence and induces the expression of novel BoCAR genes. Plant Physiology and Biochemistry, 45(6-7), 445-456. https://doi.org/10.1016/j.plaphy.2007.04.002
Eom, S., Baek, S., Kim, J., & Hyun, T. (2018). Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Molecules, 23(5), 1186. https://doi.org/10.3390/molecules23051186
Fernández-León, M., Fernández-León, A., Lozano, M., Ayuso, M., & Gonzáles-Gómez, D. (2013). Different postharvest strategies to preserve broccoli quality during storage and shelf life: Controlled atmosphere and 1-MCP. Food Chemistry, 138(1), 564-573. https://doi.org/10.1016/j.foodchem.2012.09.143
Frerigmann, H., & Gigolashvili, T. (2014). MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 7(5), 814-828. https://doi.org/10.1093/mp/ssu004
Gómez Lobato, M., Civello, P., & Martínez, G. (2012). Effects of ethylene, cytokinin and physical treatments on BoPaO gene expression of harvested broccoli. Journal of the Science of Food and Agriculture, 92(1), 151-158. https://doi.org/10.1002/jsfa.4555
Gómez Lobato, M., Mansilla, S., Civello, P., & Martínez, G. (2014). Expression of Stay-Green encoding gene (BoSGR) during postharvest senescence od broccoli. Postharvest Biology and Technology, 95, 88-94. https://doi.org/10.1016/j.postharvbio.2014.04.010
Guo, R., Shen, W., Qian, H., Zhang, M., Liu, L., & Wang, Q. (2013). Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. Journal of Experimental Botany, 64(18), 5707-5719. https://doi.org/10.1093/jxb/ert348
Halkier, B. & Du, L. (1997). The biosynthesis of glucosinolates. Trends in Plant Science, 2(11), 425-431. https://doi.org/10.1016/S1360-1385(97)90026-1
Jeffery, E., & Araya, M. (2009). Physiological effects of broccoli consumption. Phytochemistry Reviews, 8(1), 283-298. https://doi.org/10.1007/s11101-008-9106-4
Jia, C., Xu, C., Wei, J., Yuan, J., Yuan, G., Wang, B., & Wang, Q. (2009). Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chemistry, 114(1), 28-37. https://doi.org/10.1016/j.foodchem.2008.09.009
Jones, J., & Dangl, J. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286
Ma, G., Zhang, L., Kato, M., Yamawaki, K., Asai, T., Nishikawa, F., Ikoma, Y., & Matsumoto, H. (2010). Effect of 1-methylcyclopropene on the expression of genes for ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 58(2), 121-128. https://doi.org/10.1016/j.postharvbio.2010.05.011
Mandrich, L., & Caputo, E. (2020). Brassicaceae-derived anticancer agents: towards a green approach to beat cancer. Nutrients, 12(3), 868. https://doi.org/10.3390/nu12030868
Martínez-Ballesta, M., Moreno, D., & Carvajal, M. (2013). The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. International Journal of Molecular Science, 14(6), 11607-11625. https://doi.org/10.3390/ijms140611607
Mellon, F., Bennett, R., Holst, B., & Williamson, G. (2002). Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: performance and comparison with LC/MS/MS methods. Analytical Biochemistry, 306(1), 83-91. https://doi.org/10.1006/abio.2002.5677
Moreira-Rodríguez, M., Nair, V., Benavides, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. (2017). UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules, 22(7), 1065. https://doi.org/10.3390/molecules22071065
Oliveira, M., Abadias, M., Usall, J., Torres, R., Teixidó, N., & Viñas, I. (2015). Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables - A review. Trends in Food Science & Technology, 46(1), 13-26. https://doi.org/10.1016/j.tifs.2015.07.017
Pintos, F., Hasperué, J., Ixtaina, P., Vicente, A., Lemoine, M., & Rodoni, L. (2021). Short light exposure preserves broccoli head quality and nutrients during refrigerated storage. Journal of Food Processing and Preservation, 45(10), e15801. https://doi.org/10.1111/jfpp.15801
Prieto, M., López, C., & Simal-Gandara, J. (2019). Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Advances in food and Nutrition Research, 90, 305-350. https://doi.org/10.1016/bs.afnr.2019.02.008
Rangkadilok, N., Tomkins, B., Nicolas, M., Premier, R., Bennet, R., Eagling, D., & Taylos, P. (2002). The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). Journal of Agricultural and Food Chemistry, 50(25), 7386-7391. https://doi.org/10.1021/jf0203592
Rao, S., Chen, X., Wang, K., Zhu, Z., Yang, J., & Zhu, B. (2021). Effect of short-term high temperature on the accumulation of glucosinolates in Brassica rapa. Plant Physiology and Biochemistry, 161, 222-233. https://doi.org/10.1016/j.plaphy.2021.02.013
Reyes Jara, A., Gómez Lobato, M., Civello, P., & Martínez, G. (2019). Effects of hormonal and physical treatments on the expression of a putative chlorophyll b reductase gene (BoNYC1) during postharvest senescence of broccoli. Postharvest Biology and Technology, 147, 107-112. https://doi.org/10.1016/j.postharvbio.2018.09.010
Schreiner, M., Peters, P., & Krumbein, A. (2006). Glucosinolates in Mixed-Packaged Mini Broccoli and Mini Cauliflower under Modified Atmosphere. Journal of Agricultural and Food Chemistry, 54(6), 2218-2222. https://doi.org/10.1021/jf0525636
Singh, S., Rai, A., Alam, T., & Singh, B. (2018). Influence of modified atmosphere packaging (MAP) on the shelf life and quality of broccoli during storage. Journal of Packaging Technology Research, 2, 105-113. https://doi.org/10.1007/s41783-018-0030-9
Sønderby, I., Burow, M., Rowe, H., Kliebenstein, D., & Halkier, B. (2010). A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology, 153(1), 348-363. https://doi.org/10.1104/pp.109.149286
Tian, M., Yang. Y., Ávila, F., Fish, T., Yuan, H., Hui, M., Pan, S., Thannhauser, T. & Li, L. (2018). Effects of selenium supplementation on glucosinolate biosynthesis in broccoli. Journal of Agricultural and Food Chemistry, 66(30), 8036-8044. https://doi.org/10.1021/acs.jafc.8b03396
Wan, C., & Wilkins, T. (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry, 223(1), 7-12. https://doi.org/10.1006/abio.1994.1538
Wang, J., Gu, H., Yu, H., Zhao, Z., Sheng, X., & Zhang, X. (2012). Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. Italica) florets from China. Food Chemistry, 133(3), 735-741. https://doi.org/10.1016/j.foodchem.2012.01.085
Xu, C., Guo, D., Yuan, J., Yuan, G., & Wang, Q. (2006). Changes in glucoraphanin content and quinone reductase activity in broccoli (Brassica oleracea var. Italica) florets during cooling and controlled atmosphere storage. Postharvest Biology and Technology, 42(2), 176-184. https://doi.org/10.1016/j.postharvbio.2006.06.009
Xu, D., Hanschen, F., Witzel, K., Nintemann, S., Nour-Eldin, H., Schreiner, M., & Halkier, B. (2017). Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. Journal of Experimental Botany, 68(12), 3205-3214. https://doi.org/10.1093/jxb/erw355
Xu, F., Wang, H., Tang, Y., Dong, S., Qiao, X., Chen, X., & Zheng, Y. (2016). Effect of 1-methylcyclopropene on senescence and sugar metabolism in harvested broccoli florets. Postharvest Biology and Technology, 116, 45-49. https://doi.org/10.1016/j.postharvbio.2016.01.004
Zimmermann, N., Gerendás, J., & Krumbein, A. (2007). Identification of desulphoglucosinolates in Brassicaceae by LC/MS/MS: Comparison of ESI and atmospheric pressure chemical ionisation-MS. Molecular Nutrition and Food Research, 51(12), 1537-1546. https://doi.org/10.1002/mnfr.200700103