Biological activities of quercetin and other flavonols: A mini-review

Autores

DOI:

https://doi.org/10.5327/fst.00220%20

Palavras-chave:

flavonoids, antioxidant compounds, Quercetin, health, secondary compounds

Resumo

There are countless benefits arising from the consumption of vegetables, which can present significant levels of compounds with bioactive properties, effectively acting in the promotion of human health. Bioactive compounds that play an antioxidant role have been widely studied since most of the diseases that affect humans can be derived from the presence of free radicals in the body, leading to a series of metabolic disorders. Quercetin has several pharmacological activities and antioxidant, anti-inflammatory, vasodilator, and anticancer effects. Despite the efficacy and safety of its consumption, the limited bioavailability of this phenol continues to be highlighted as a main concern, where factors such as solubility, absorption, and metabolism have a direct influence on this process and its beneficial effects. Among the compounds with antioxidant activity are flavonoids, such as quercetin, which have shown great effectiveness and are even associated with very positive responses against some types of tumor cells. Quercetin is shown to be a powerful ally in promoting health and a better quality of life. However, further studies are needed to be able to accurately state the benefits resulting from the consumption of this compound.

Downloads

Não há dados estatísticos.

Biografia do Autor

Edson Pablo SILVA, Amazon Biobusiness Center, Manaus, Amazonas, Brazil.

Graduated in Biological Sciences, has a master's degree in Food Sciences from the Federal University of Lavras (2009) and a doctorate with a sandwich period at the Institute of Agrochemistry and Food Technology-Valencia/Spain. Post-doctorate in Food Science and Technology with an emphasis on Native Fruits of the Cerrado - UFG (2018). Post-doctorate in Food Science and Technology with an emphasis on Native Fruits of the Amazon Biome - INPA (2019). He has experience in the area of ​​Food Science and Technology, with an emphasis on post-harvest physiology of fruits and vegetables, biochemistry and food analysis, food microbiology, Gas Chromatography by HSPME, development of new products. He works in the area of ​​bio-prospecting, physiology of Cerrado fruits and development of new food products using native Brazilian fruits as raw material. He is currently responsible for the Extract Production Center (NPE) and Industrial Pilot Plant (PPI) at CBA-SUFRAMA/Amazonas. Professor of Postgraduate Programs in Biotechnology - Stricto Sensu (UFAM)

Referências

Aires, M. V. L., Modesto, R. M. G., & Santos, J. S. (2021). The benefits of grape on human health: a review. Research, Society and Development, 10(14), e281101421825. https://doi.org/10.33448/rsd-v10i14.21825

Azevedo-Santos, V. M., Marques, L. M., Teixeira, C. R., Giarrizzo, T., Barreto, R., & Rodrigues-Filho, J. L. (2021). Digital media reveal negative impacts of ghost nets on Brazilian marine biodiversity. Marine Pollution Bulletin, 172, 112821. https://doi.org/10.1016/j.marpolbul.2021.112821

Babu, P. V. A., Liu, D., & Gilbert, E. R. (2013). Recent advances in understanding the anti-diabetic actions of dietary flavonoids. Journal of Nutrition Biochemistry, 24(11), 1777-1789.

Biesalski, H. K., Dragsted, L. O., Elmadfa, I., Grossklaus, R., Müller, M., Schrenk, D., Walter, P., & Weber, P. (2009). Bioactive compounds: definition and assessment of activity. Nutrition, 25(11-12), 1202-1205. https://doi.org/10.1016/j.nut.2009.04.023

Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369. https://doi.org/10.1016/j.rser.2012.11.030

Calderón-Montaño, J. M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoiaempferol. Mini Reviews in Medicinal Chemistry, 11(4), 298-344. https://doi.org/10.2174/138955711795305335

Chen, C., Zhou, J., & Ji, C. (2010). Quercetin: a potential drug to reverse multidrug resistance. Life Sciences, 87(11-12), 333-338. https://doi.org/10.1016/j.lfs.2010.07.004

Chirumbolo, S. (2010). The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation & Allergy-Drug Targets, 9(4), 263-285. https://doi.org/10.2174/187152810793358741

Choi, H. J., Kim, J. H., Lee, C. H., Ahn, Y. J., Song, J. H., Baek, S. H., & Kwon, D. H. (2009). Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Research, 81(1), 77-81. https://doi.org/10.1016/j.antiviral.2008.10.002

Crozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001-1043. https://doi.org/10.1039/b802662a

Dabeek, W. M., & Marra, M. V. (2019). Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/10.3390/nu11102288

D’Andrea, G. (2015). Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 106, 256-271. https://doi.org/10.1016/j.fitote.2015.09.018

da Silva, A. P. G. (2021). Fighting coronaviruses with natural polyphenols. Biocatalysis and Agricultural Biotechnology, 37, 102179. https://doi.org/10.1016/j.bcab.2021.102179

Deepak, P., Fletcher, J. G., Fidler, J. L., Barlow, J. M., Sheedy, S. P., Kolbe, A. B., Harmsen, W. S., Loftus, E. V., Hansel, S. L., Becker, B. D., & Bruining, D. H. (2016). Radiological response is associated with better long-term outcomes and is a potential treatment target in patients with small bowel Crohn's disease. American Journal of Gastroenterology, 111(7), 997-1006. https://doi.org/10.1038/ajg.2016.177

Di Petrillo, A., Orrù, G., Fais, A., & Fantini, M. C. (2022). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research, 36(1), 266-278. https://doi.org/10.1002/ptr.7309

Flamini, R. (2013). Recent applications of mass spectrometry in the study of grape and wine polyphenols. International Scholarly Research Notices, 2013(1), 813563. https://doi.org/10.1155/2013/813563

Guo, B., Chou, F., Huang, L., Yin, F., Fang, J., Wang, J. B., & Jia, Z. (2022). Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Critical Reviews in Food Science and Nutrition, 64(5), 1312-1339. https://doi.org/10.1080/10408398.2022.2115456

Hertog, M. G. L., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., Nedeljkovic, S. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Archives of Internal Medicine, 155(4), 381-386.

Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., Mengelers, M. J., & Katan, M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. American Journal of Clinical Nutrition, 62(6), 1276-1282. https://doi.org/10.1093/ajcn/62.6.1276

Hryniewicz, K., Jakubowicz, M., Belka, Z., Dopieralska, J., & Kaim, A. (2017). New bivalves from a Middle Devonian methane seep in Morocco: the oldest record of repetitive shell morphologies among some seep bivalve molluscs. Journal of Systematic Palaeontology, 15(1), 19-41. https://doi.org/10.1080/14772019.2015.1136900

Lobão, A. G. S. R., Coêlho, M. L., & Soares, L. E. C. (2020). Análise da ação fotoprotetora dos flavonoides. Revista Multidisciplinar em Saúde, 1(2), 32-32.

Machado, E. C., Schmidt, P. T., Medina, C. L., & Ribeiro, R. V. (2005). Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesquisa Agropecuária Brasileira, 40, 1161-1170.

Mariani, A., Dowdy, S. C., Cliby, W. A., Gostout, B. S., Jones, M. B., Wilson, T. O., & Podratz, K. C. (2008). Prospective assessment of lymphatic dissemination in endometrial cancer: a paradigm shift in surgical staging. Gynecologic Oncology, 109(1), 11-18. https://doi.org/10.1016/j.ygyno.2008.01.023

Michala, A.-S., & Pritsa, A. (2022). Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases, 10(3), 37. https://doi.org/10.3390/diseases10030037

Moraes, G. V., Jorge, G. M., Gonzaga, R. V., & Santos, D. A. (2022). Antioxidant potential of flavonoids and therapeutic applications. Research, Society and Development, 11(14), e238111436225. https://doi.org/10.33448/rsd-v11i14.36225

Nardini, M., & Garaguso, I. (2020). Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry, 305, 125437. https://doi.org/10.1016/j.foodchem.2019.125437

Perez-Vizcaino, F., & Duarte, J. (2010). Flavonols and cardiovascular disease. Molecular Aspects of Medicine, 31(6), 478-494. https://doi.org/10.1016/j.mam.2010.09.002

Rana, A. C., & Gulliya, B. (2019). Chemistry and pharmacology of flavonoids-A review. Indian Journal of Pharmaceutical Education & Research, 53(1), 8-20. https://doi.org/10.5530/ijper.53.1.3

Satyendra, R. V. R., Vishnumurthy, K. A. A., Vagdevi, H. M., Rajesh, K. P. G., Manjunatha, H., & Shruthi, A. G. (2012). In vitro antimicrobial and molecular docking of dichloro substituted benzoxazole derivatives. Medicinal Chemistry Research, 21, 4193-4199. https://doi.org/10.1007/s00044-011-9963-z

Semwal, D. K., Semwal, R. B., Combrinck, S., & Viljoen, A. (2016). Myricetin: A dietary molecule with diverse biological activities. Nutrients, 8(2), 90. https://doi.org/10.3390%2Fnu8020090

Shafek, R. E., Shafik, N. H., & Michael, H. N. (2012). Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Asian Journal of Plant Sciences, 11(3), 143-147. https://doi.org/10.3923/ajps.2012.143.147

Silva, A. P. G., Sganzerla, W. G., Jacomino, A. P., Silva, E. P., Xiao, J., & Simal-Gandara, J. (2022). Chemical composition, bioactive compounds, and perspectives for the industrial formulation of health products from uvaia (Eugenia pyriformis Cambess - Myrtaceae): A comprehensive review. Journal of Food Composition and Analysis, 109, 104500. https://doi.org/10.1016/j.jfca.2022.104500

Silva, E. P., Hermino, V. L. de Q., Motta, D. N., Soares, M. B. P., Rodrigues, L. de A. P., Viana, J. D., Freitas, F. A. de, Silva, A. P. G. da, Souza, F. das C. do A., & Vilas Boas, E. V. de B. (2022). The role of phenolic compounds in metabolism and their antioxidant potential. Research, Society and Development, 11(10), e297111031750. https://doi.org/10.33448/rsd-v11i10.31750

Singla, R. K., Dubey, A. K., Garg, A., Sharma, R. K., Fiorino, M., Ameen, S. M., Haddad, M. A., & Al-Hiary, M. (2019). Natural polyphenols: chemical classification, definition of classes, subcategories, and Structures. Journal of AOAC International, 102(5), 1397-1400. https://doi.org/10.5740/jaoacint.19-0133

Sokół-Łetowska, A., Oszmianski, J., & Wojdyło, A. (2007). Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food Chemistry, 103(3), 853-859. https://doi.org/10.1016/j.foodchem.2006.09.036

Somerville, V. S., Braakhuis, A. J., & Hopkins, W. G. (2016). Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Advances in Nutrition, 7(3), 488-497. https://doi.org/10.3945/an.115.010538

Song, Y., Shen, L., Xing, L., & Ermon, S. (2021). Solving inverse problems in medical imaging with score-based generative models. arXiv, 08005. https://doi.org/10.48550/arXiv.2111.08005

Souza, A. S. N., Schmidt, H. O., Pagno, C., Rodrigues, E., Silva, M. A. S., Flôres, S. H., & Oliveira Rios, A. (2022). Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Research International, 155, 111110. https://doi.org/10.1016/j.foodres.2022.111110

Ulusoy, H. G., & Sanlier, N. (2020). A mini review of quercetin: from its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition, 60(19), 3290-3303. https://doi.org/10.1080/10408398.2019.1683810

Veiko, A. G., Lapshina, E. A., & Zavodnik, I. B. (2021). Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Molecular and Cellular Biochemistry, 476(12), 4287-4299. https://doi.org/10.1007/s11010-021-04243-w

Verma, V. C., Kumar, V., Tiwari, A., Tsewang, T., & Acharya, S. (2021). Doubling the income of farmers of the country: ways and means.

Vissiennon, C., Nieber, K., Kelber, O., & Butterweck, V. (2012). Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin — are they prodrugs? Journal of Nutritional Biochemistry, 23(7), 733-740. https://doi.org/10.1016/j.jnutbio.2011.03.017

Wang, L., Zhang, B., Xiao, J., Huang, Q., Li, C., & Fu, X. (2018). Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chemistry, 249, 127-135. https://doi.org/10.1016/j.foodchem.2018.01.011

Zanoni, J. N., & Hermes-Uliana, C. (2015). Combination vitamin C and vitamin E prevents enteric diabetic neuropathy in the small intestine in rats. Brazilian Archives of Biology and Technology, 58(4), 504-511. https://doi.org/10.1590/S1516-8913201500414

Downloads

Publicado

2024-11-05

Como Citar

SILVA, E. P., HERMINO, V. L. de Q., RODRIGUES, L., BARBOSA, J., FREITAS, F. A. de, SOUZA, C., CARVALHO, R. P., MADURO, I. P. de N. N., MACAMBIRA, S. G., & SOARES, M. (2024). Biological activities of quercetin and other flavonols: A mini-review. Food Science and Technology, 44. https://doi.org/10.5327/fst.00220

Edição

Seção

Artigos de Revisão