Antioxidant activity on protein hydrolysate peptide of mudskipper fish (Periophthalmodon schlosseri) using alcalase enzyme
DOI:
https://doi.org/10.5327/fst.122222Palavras-chave:
alcalase, antioxidant, DPPH, fish protein hydrolysate, mudskipper, Periophthalmodon schlosseriResumo
Mudskipper fish is an endemic amphibian fish that has high potential to be developed into fish protein hydrolysate due to the high protein content (92% per dry weight). The aim of the research was to obtain new peptide compounds and hydrolyze the antioxidant activity of mudskipper fish (Periophthalmodon schlosseri). The design used in this study was a completely randomized design (CRD) with enzyme concentrations of 1.5 and 2% with three repetitions. The data obtained were analyzed using descriptive statistics and ANOVA. The results showed that mudskipper fish has the proximate content in the form of water content of 79.13% (wb), protein of 91.85% (db), fat of 1.50% (db), and ash of 4.54% (db), with glutamate amino acid being the highest (6.78%). The protein content of large molecular weight in fish protein hydrolysate obtained using an enzyme concentration of 1, 1.5, and 2% is relatively small, namely, 24.62, 4.85, and 9.47%, respectively. Several peptide compounds were identified in the hydrolysate using enzyme concentrations of 1, 1.5, and 2%, respectively: L-Arg-L-Pro, Phe-Pro, and L-Leu-L-Leu-L-Glu; L-Leu-L-Pro, L-Arg-L-Pro, and L-Leu-L-lys-L-Pro; and lys-Leu, L-Leu-L-Pro, Leu-Trp-Gln-Thr, L-Tyr-L-Gln-L-Val-L-Pro, L-Tyr-L-Gln-L-Leu-L-Pro, and L-Leu-L-Ser-L-Phe-L-Ala-L-α-Gln-L-Pro-Gly. Furthermore, the hydrolysate obtained effectively scavenged DPPH free radicals with IC50 values of 10.98±0.57%v/v, 4.04±0.79%v/v, and 8.69±0.028%v/v, respectively.
Downloads
Referências
Ansari, A. A., Trivedi, S., Saggu, S., & Rehman, H. (2014). Mudskipper: A biological indicator for environmental monitoring and assessment of coastal waters. Journal of Entomology and Zoology Studies, 2(6), 22-33.
Ardiani, A. P., & Rahmayanti, M. (2022). Kualitas Hidrolisat Protein Jamur Tiram (Pleurotus ostreatus) Hasil Hidrolisis Menggunakan Enzim Bromelin dari Ekstrak Nanas (Quality of Oyster Mushroom Protein Hydrolyzate (Pleurotus ostreatus) Results of Hydrolysis Using Bromelin Enzyme from Pineapple Extract). Jurnal Sains dan Teknologi, 11(2), 305-314. https://doi.org/10.23887/jstundiksha.v11i2.45211
Arshad, N., Siow, H. L., Ngoh, Y. Y., Sofian, N. A. H. S., & Gan, C. Y. (2019). Enzyme and bioactive peptides—A strategy for discovery and identification of antihypertensive peptides. In M. Kuddus (ed.), Enzymes in Food Biotechnology (pp. 343-367). Academic Press.
Betty, M., Awuor, L., Kirwa, M. E., & Jackim, M. F. (2014). Antioxidative and functional properties of Rastrineobola argentea (Dagaa) fish protein hydrolysate. Journal of Agriculture and Food Sciences, 2(6), 180-189.
Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559-565. https://doi.org/10.1016/j.foodchem.2009.05.021
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Buxton, G. V., Greeenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513-886. https://doi.org/10.1063/1.555805
Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038. https://doi.org/10.1016/j.foodchem.2012.06.100
Corsetti, G., Pasini, E., Romano, C., Calvani, R., Picca, A., Marzetti, E., Flati, V., & Dioguardi, F. S. (2018). Body Weight Loss and Tissue Wasting in Late Middle-Aged Mice on Slightly Imbalanced Essential/Non-essential Amino Acids Diet. Frontiers in Medicine, 5, 136. https://doi.org/10.3389/fmed.2018.00136
Davies, M. J. (2005). The Oxidative Environment and Protein Damage. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1703(2), 93-109. https://doi.org/10.1016/j.bbapap.2004.08.007
Edison, Dewita, Karnila, R., & Yoswaty, D. 2020. The Hydrolysis of Fish Protein from Giant Mudskipper (Periophthalmodon Schlosseri) Using Alcalase Enzyme. Current Research in Nutrition and Food Science, 8(3), 5-8. https://doi.org/10.12944/CRNFSJ.8.3.32
Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews of Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615
Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2011). In Vitro Antioxidant Properties of Hemp Seed (Cannabis sativa L.) Protein Hydrolysate Fractions. Journal of American Oil Chemistry Society, 88(3), 381-389. https://doi.org/10.1007/s11746-010-1686-7
Hoyle, N. T., & Merritt, H. J. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76-79. https://doi.org/10.1111/j.1365-2621.1994.tb06901.x
Jeevitha, K., Mohana, P. K., & Khora, S. S. (2014). Antioxidant activity of fish protein hydrolysates from Sardinella longiceps. International Journal of Drug Development & Research, 6(4), 137-145.
Ketnawa, S., Wickramathilaka, M., & Liceaga, A. M. (2018). Changes on antioxidant activity of microwave‐treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chemistry, 254, 36-46. https://doi.org/10.1016/j.foodchem.2018.01.133
Kim, S. Y., Je, J. Y., & Kim, S. K. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. Journal of Nutritional Biochemistry, 18(1), 31-38. https://doi.org/10.1016/j.jnutbio.2006.02.006
Li, Y., Jiang, B., Zhang, T., Mu, W., & Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106(2), 444-450. https://doi.org/10.1016/j.foodchem.2007.04.067
Moayedi, A., Mora L., Aristoy, M. C., Hashemi M., Safari, M., & Toldra, F. (2017). ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained of Tomato Processing by-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 181(1), 48-64. https://doi.org/10.1007/s12010-016-2198-1
Ngo, D. H., & Kim, S. K. (2013). Marine Bioactive Peptides as Potential Antioxidants. Current Protein and Peptide Science, 14(3), 189-198. https://doi.org/10.2174/13892037113149990041
Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., and Aluko, R. E. (2018). Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT, 97, 269-278. https://doi.org/10.1016/j.lwt.2018.07.003
Onsaard, W., Kate-Ngam, S., & Onsaard, E. (2022). Physicochemical and Antioxidang Properties of Rice Bran Protein Hydrolysates Obtained from Different Proteases. Journal of Food Measurement and Characterization, 17(2), 1-12. https://doi.org/10.1007/s11694-022-01796-2
Pownall, T. L., Udenigwe, C. U., & Aluko, R. E. (2010). Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions. Journal of Agriculture and Food Chemistry, 58(8), 4712-4718. https://doi.org/10.1021/jf904456r
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2), 727-736. https://doi.org/10.1016/j.foodchem.2007.11.010
Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229-254. https://doi.org/10.1016/j.jff.2011.05.006
Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3), 407-411. https://doi.org/10.1007/s00726-013-1500-6
Wu, H.-C., Chen, H.-M., & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), 949-957. https://doi.org/10.1016/S0963-9969(03)00104-2
Wulansari, A. S. (2018). Alternatif Cantigi Ungu (Vaccinium varingiaefolium) Sebagai Antioksidan Alami: Review (An Alternative to Purple Cantigi (Vaccinium varingiaefolium) As a Natural Antioxidant: Review). Jurnal Farmaka Suplemen, 16(2), 419-429. https://doi.org/10.24198/jf.v16i2.17574.g8779