CO2 monitoring associated with the quality of soybean grains stored in different moisture contentes
DOI:
https://doi.org/10.5327/fst.29023Palavras-chave:
Glycine max (L) Merrill, grain degradation, intergranular atmosphere, technical breakageResumo
The objective of this study was to quantify the levels of CO2 produced by soybeans stored at room temperature in a prototype silo, with initial moisture contents of 12, 14, and 16% (w.b.), as well as to evaluate the quality of the product over storage. Analyses of the moisture content, ash, proteins, lipids, color, germination, and electrical conductivity were performed. In the atmosphere in the silos, the amount of CO2, relative humidity, and temperature were monitored every hour using a CO2 meter data logger. Grain quality evaluations took place at four storage times (0, 30, 60, and 90 days). Analyses were performed in triplicate, and data were analyzed using analysis of variance and regression, adopting the 5% level of significance. The moisture contents, protein, lipids, germination, and color were reduced over time, resulting in a loss of grain quality. Soybeans initially stored with 16% (w.b.) of initial moisture content showed greater losses associated with the rise in the levels of CO2. The rise in CO2 emission in the internal atmosphere of the silo signals the beginning of grain deterioration and can be used as a decision-making tool, aiming at preventing and reducing losses in product quality over storage.
Downloads
Referências
Alencar, E. R., Faroni, L. R. A., Lacerda Filho, A. F., Peternelli, L. A., & Costa, A. R. (2009). Qualidade dos grãos de soja armazenados em diferentes condições. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(5), 606-613. https://doi.org/10.1590/S1415-43662009000500014
Association of Official Analytical Chemists (AOAC) (2000). Official Methods of Analysis of the Association of Official Analytical Chemists. AOAC.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária (2009a). Manual de Análise Sanitária de Sementes. MAPA/ACS.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária (2009b). Regras para análise de sementes. MAPA/ACS.
Companhia Nacional de Abastecimento (CONAB) (2021). Acompanhamento da safra brasileira: grãos. Sexto levantamento de plantio, março 2020/21. Companhia Nacional de Desenvolvimento. Retrieved from https://www.conab.gov.br/info-agro/safras/graos
Companhia Nacional de Abastecimento (CONAB) (2023). Acompanhamento da safra brasileira: grãos. Sexto levantamento de plantio, março 2022/23. Companhia Nacional de Desenvolvimento. Retrieved from https://www.conab.gov.br/info-agro/safras/graos
Coradi, P. C., Maldaner, V., Lutz, É., Silva, P. V., & Teodoro, P. E. (2020). Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales. Scientific Reports, 10, 22006. https://doi.org/10.1038/s41598-020-78914-x
Corrêa, P. C., Botelho, F. M., Botelho, S. C. C., Goneli, A. L. D. (2014). Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 1047-1052. https://doi.org/10.1590/1807-1929/agriambi.v18n10p1047-1052
Costa, A. R., Faroni, L. R. D., Alencar, E. R., Carvalho, M. C. S., & Ferreira, L. G. (2010). Qualidade de grãos de milho armazenados em silos bolsa. Revista Ciência Agronômica, 41(2), 200-207. https://doi.org/10.1590/S1806-66902010000200005
Ferreira, C. D., Ziegler, V., Paraginski, R. T., Vanier, N. L., Elias, M. C., & Oliveira, M. (2017). Physicochemical, antioxidant and cooking quality properties of longterm stored black beans: effects of moisture content and storage temperature. International Food Research Journal, 24(6), 2490-2499. Retrieved from http://www.ifrj.upm.edu.my/24%20(06)%202017/(30).pdf
Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450
Garcia-Cela, E., Kiaitsi, E., Sulyok, M., Krska, R., Medina, A., Petit Damico, I., & Magan, N. (2019). Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Additives & Contaminants: Part A, 36(1), 175-185. https://doi.org/10.1080/19440049.2018.1556403
Garcia-Cela, E., Kiaitsi, E., Sulyok, M., Medina, A., & Magan, N. (2018). Fusarium graminearum in stored wheat: use of CO2 production to quantify dry matter losses and relate this to relative risks of zearalenone contamination under interacting environmental conditions. Toxins, 10(2), 86. https://doi.org/10.3390/toxins10020086
Garcia-Cela, E., Sanchez, F. G., Sulyok, M., Verheecke-Vaessen, C., Medina, A., Krska, R., & Magan, N. (2020). Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors. Fungal Biology, 124(1), 1-7. https://doi.org/10.1016/j.funbio.2019.10.003
Gregori, R., Meriggi, P., Pietri, A., Formenti, S., Baccarini, G., & Battilani, P. (2013). Dynamics of fungi and related mycotoxins during cereal storage in silo bags. Food Control, 30(1), 280-287. https://doi.org/10.1016/j.foodcont.2012.06.033
Jian, F., Tang, P., Al Mamun, M. A., & Jayas, D. S. (2019). Effect of field treatment on microfloral respiration and storability of canola under different storage conditions. American Journal of Plant Sciences, 10(11), 1989-2001. https://doi.org/10.4236/ajps.2019.1011139
Likhayo, P., Bruce, A. Y., Tefera, T., & Mueke, J. (2018). Maize grain stored in hermetic bags: Effect of moisture and pest infestation on grain quality. Journal of Food Quality, 2018, 2515698. https://doi.org/10.1155/2018/2515698
Liu, Z., & Zhu, Y. (2017). Prediction of grain storage temperature based on deep learning. Revista de la Facultad de Ingeniería UCV, 32(14), 918-924.
Neethirajan, S., Freund, M. S., Jayas, D. S., Shafai, C., Thomson, D. J., & White, N. D. G. (2010). Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosystems Engineering, 106(4), 395-404. https://doi.org/10.1016/j.biosystemseng.2010.05.002
Neves, E., & Savelli, R. A. (2017). Determinaçao da perda de peso de grãos de milho armazenados através de diferentes métodos. Enciclopédia Biosfera, 14(26), 257-270.
Ochandio, D., Bartosik, R., Gastón, A., Abalone, R., Arias Barreto, A., & Yommi, A. (2017). A. Modelling respiration rate of soybean seeds (Glycine max (L.)) in hermetic storage. Journal of Stored Products Research, 74, 36-45. https://doi.org/10.1016/j.jspr.2017.09.001
Paucar-Menacho, L. M., Silva, L. H. D., Barretto, P. A. D. A., Mazal, G., Fakhouri, F. M., Steel, C. J., & Collares-Queiroz, F. P. (2008). Desenvolvimento de massa alimentícia fresca funcional com a adição de isolado protéico de soja e polidextrose utilizando páprica como corante. Food Science and Technology, 28(4), 767-778. https://doi.org/10.1590/S0101-20612008000400002
Rani, P. R., Chelladurai, V., Jayas, D. S., White, N. D. G., & Kavitha-Abirami, C. V. (2013). Storage studies on pinto beans under different moisture contents and temperature regimes. Journal of Stored Products Research, 52, 78-85. https://doi.org/10.1016/j.jspr.2012.11.003
Raudienė, E., Rušinskas, D., Balčiūnas, G., Juodeikienė, G., & Gailius, D. (2017). Carbon dioxide respiration rates in wheat at various temperatures and moisture contents. MAPAN, 32, 51-58. https://doi.org/10.1007/s12647-016-0202-4
Santos, S. B. D., Martins, M. A., Faroni, L. R. D. A., & Brito Junior, V. R. D. (2012). Perda de matéria seca em grãos de milho armazenados em bolsas herméticas. Revista Ciência Agronômica, 43(4), 674-682.
Schiavon, R. A., Nogueira, I. S., Borges, G. B., Holanda, H. S., & Castro, L. K. (2019). Arduino uma tecnologia de baixo custo para a termometria de grãos armazenados. Brazilian Journal of Development, 5(10), 18825-18839. https://doi.org/10.34117/bjdv5n10-124
Suleiman, R. A., Bern, C. J., Brumm, T. J., & Rosentrater, K. A. (2018). Impact of moisture content and maize weevils on maize quality during hermetic and non-hermetic storage. Journal of Stored Products Research, 78, 1-10. https://doi.org/10.1016/j.jspr.2018.05.007
Suleiman, R. A., & Rosentrater, K. A. (2016). Measured and predicted temperature of maize grain (Zea mays L.) under hermetic storage conditions. Journal of Stored Products and Postharvest Research, 7(1), 1-10. https://doi.org/10.5897/JSPPR2015.0191
Tavares, C. J., Sousa, M. S., Araujo, A. C., Jakelaitis, A., & Resende, O. (2016). Yield, specific mass and coloration of azuki seeds after desiccation and storage. Engenharia Agrícola, 36(5), 858-865. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p858-865/2016
Valle, F. J. M., Gaston, A., Abalone, R. M., de la Torre, D. A., Castellari, C. C., & Bartosik, R. E. (2021). Study and modelling the respiration of corn seeds (Zea mays L.) during hermetic storage. Biosystems Engineering, 208, 45-57. https://doi.org/10.1016/j.biosystemseng.2021.05.009
Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, & J. B. França Neto (eds.), Vigor de sementes: conceitos e testes (cap. 4, pp. 1-26). Abrates.
Wenneck, G. S., Saath, R., Wenneck, G. S., Pereira, G. L., Villa, V., & Alves, L. H. B. (2022). CO2 monitoring system for storage of grains and seeds. Revista Engenharia na Agricultura, 30, 273-282. https://doi.org/10.13083/reveng.v30i1.14026
Ziegler, V., Marini, L. J., Dietrich Ferreira, C., Aldrighi Bertinetti, I., Vieira da Silva, W. S., Schwanz Goebel, J. T., Oliveira, M., & Cardoso Elias, M. (2016). Effects of temperature and moisture during semi-hermetic storage on the quality evaluation parameters of soybean grain and oil. Semina: Ciências Agrárias, 37(1), 131-144. https://doi.org/10.5433/1679-0359.2016v37n1p131
Ziegler, V., Paraginski, R. T., & Ferreira, C. D. (2021). Grain storage systems and effects of moisture, temperature and time on grain quality-A review. Journal of Stored Products Research, 91, 101770. https://doi.org/10.1016/j.jspr.2021.101770