Production of probiotic kvass beverages enriched with pine nut shell extract and propionic acid bacteria
DOI:
https://doi.org/10.5327/fst.26823Palavras-chave:
probiotic beverage, kvass, curd whey, yeast, propionic acid bacteria, pine nutshellResumo
The aim of this study was to develop a new functional product: a probiotic kvass beverage (PKB) based on curd whey with the addition of polyphenols from Pinus sibirica shell extract and propionic acid bacteria (PAB). The studies conducted have shown that replacing water with curd whey in the traditional technology for preparing kvass wort contributes to the active growth of yeast and the accumulation of alcohol. Therefore, it has been established that the separate cultivation of yeast and PAB is optimal. The optimal parameters for producing a product with the best consumer properties were determined: the dose of yeast starter, the amount of PAB concentrates, the quantity of pine shell extract, and the duration of the cultivation stages. Fermentation of whey-based fermented kvass wort with a concentrate of PAB and pine shell extract enriches it with propionic, acetic, and free amino acids (FAA) and B vitamins. Also, it improves the consumer properties of beverages and the quality and functional properties of the finished product. Tannins give the product a brown color and a pleasant tart taste. The high antioxidant activity of tannins contributes to preserving the quality of beverages during long-term storage. Pronounced antagonistic and antimutagenic activities of the resulting drink were established due to the combined action of yeast, PAB, and pine shell extract. Based on the research, a technology for producing a PKB was developed.
Downloads
Referências
Almeida Souza, C., Oliveira, Í. A. C. L., Oliveira Rolim, V. A., & Bogsan, C. S. B. (2020). Traditional fermented foods as an adjuvant treatment to diabetes. Current Geriatrics Reports, 9(4), 242-250. https://doi.org/10.1007/s13670-020-00337-3
Antone, U., Ciprovica, I., Zolovs, M., Scerbaka, R., & Liepins, J. (2023). Propionic Acid Fermentation—Study of Substrates, Strains, and Antimicrobial Properties. Fermentation, 9(1), 26. https://doi.org/10.3390/fermentation9010026
Bermejo, L. M., López-Plaza, B., Santurino, C., Cavero-Redondo, I., & Gómez-Candela, C. (2019). Milk and dairy product consumption and bladder cancer risk: a systematic review and meta-analysis of observational studies. Advances. Nutrition, 10(Suppl. 2), S224-S238. https://doi.org/10.1093/advances/nmy119
Companys, J., Pedret, A., Valls, R. M., Solà, R., & Pascual, V. (2021). Fermented dairy foods are rich in probiotics and cardiometabolic risk factors: a narrative review from prospective cohort studies. Critical Reviews in Food Science and Nutrition, 61(12), 1966-1975. https://doi.org/10.1080/10408398.2020.1768045
Das, G., Paramithiotis, S., Sundaram Sivamaruthi, B., Wijaya, C. H., Suharta, S., Sanlier, N., & Patra, J. K. (2020). Traditional fermented foods with anti-ageing effect: A concentric review. Food Research International, 134, 109269. https://doi.org/10.1016/j.foodres.2020.109269
ISO (2005). ISO 13903. Animal feeding stuffs — Determination of amino acids content. Retrieved from https://www.iso.org/standard/37258.html
Khamidullina, E. A., Purevdash, M., Ushakov, I. V., Neretina, O. V., & Medvedeva, S. A. (2005). Phenolic compounds from Pinus sibirica shells. Chemistry of Natural Compounds, 41(1), 101-102. https://doi.org/10.1007/s10600-005-0088-9
Lamsal, B. P., & Faubion, J. M. (2009). The beneficial use of cereal and cereal components in probiotic foods. Food Reviews International, 25(2), 103-114.
López de Lacey, A. M., Pérez-Santín, E., López-Caballero, M. E., & Montero, P. (2014). Survival and metabolic activity of probiotic bacteria in green tea. LWT - Food Science and Technology, 55(1), 314–322. https://doi.org/10.1016/j.lwt.2013.08.021
Maron, D. R., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113(3-4), 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
Martinengo, P., Arunachalam, K., & Shi, C. (2021). Polyphenolic antibacterials for food preservation: review, challenges, and current applications. Foods, 10(10), 2469. https://doi.org/10.3390/foods10102469
Mohammadi, H., Ghavami, A., Faghihimani, Z., Sharifi, S., Nattagh-Eshtivani, E., Ziaei, R., & Miraghajani, M. (2021). Effects of probiotics fermented milk products on obesity measure among adults: A systematic review and meta-analysis of clinical trials. Journal of Functional Foods, 82, 104494. https://doi.org/10.1016/j.jff.2021.104494
Orlova, T. (2021). Study of the biological activity of propionic acid bacteria. The Scientific Heritage, (79-2). Retrieved from https://cyberleninka.ru/article/n/izuchenie-biologicheskoy-aktivnosti-propionovokislyh-bakteriy
Pacheco-Ordaz, R., Wall-Medrano, A., Goñi, M. G., Ramos-Clamont-Montfort, G., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2018). Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Letters in Applied Microbiology, 66(1), 25-31. https://doi.org/10.1111/lam.12814
Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2), 515-538. https://doi.org/10.1007/s00253-017-8616-7
Pozharitskaya, O. N., Shikov, A. N., Laakso, I., Dorman, H. J. D., Makarov, V. D., Hiltunen, R., & Tikhonov, V. P. (2007). Polyphenolic compounds of the seeds of Pinus sibirica (Pinaceae). Plant Resources, 2, 39-46.
Pozharitskaya, O. N., Shikov, A. N., Laakso, I., Dorman, H. J. D., Makarov, V. D., Tikhonov, V. P. & Hiltunen, R. (2006). Thiolysis-hplc characterization of the phenolic composition of nut shells of Pinus sibirica (du tour) rupr. Planta Medica, 72, 974.
Ranaei, V., Pilevar, Z., Khaneghah, A. M., & Hosseini, H. (2020). Propionic Acid: Method of Production, Current State and Perspectives. Food Technology & Biotechnology, 58(2), 115-127. https://doi.org/10.17113/ftb.58.02.20.6356
Ray, S. K., & Mukherjee, S. (2021). Evolving interplay between dietary polyphenols and gut microbiota—an emerging importance in healthcare. Frontiers in Nutrition, 8, 634944. https://doi.org/10.3389/fnut.2021.634944
Rogachev, A. D., & Salakhutdinov, N. F. (2015). Chemical Composition of Pinus sibirica (Pinaceae). Chemistry & Biodiversity, 12(1), 1-53. https://doi.org/10.1002/cbdv.201300195
Russian National Standard (1992). 3624-92 Milk and milk products. Titrimetric methods of acidity determination. Retrieved from https://docs.cntd.ru/document/1200021584
Russian National Standard (1997). 3629-97 Milk products. Method of alcohol determination. Retrieved from https://docs.cntd.ru/document/1200021589
Russian National Standard (1998). 51153-98 Aerated soft drinks and fermented bread beverages. Method for determination оf carbon dioxide. Retrieved from https://internet-law.ru/gosts/gost/8944/
Russian National Standard (2013). 32037-2013 Non-alcoholic and low-alcoholic beverages, kvases. Method for determination of carbon dioxide. Retrieved from https://docs.cntd.ru/document/1200104839
Russian National Standard (2014). 32901-2014 Milk and milk products. Methods of microbiological analysis. Retrieved from https://docs.cntd.ru/document/1200115745#7D20K3
Russian National Standard (2015). 171-2015 Pressed bakery yeast. Specifications. Retrieved from https://docs.cntd.ru/document/1200022239
Russian National Standard (2017a). 28538-2017 Kvas wort concentrates. General specifications. Retrieved from https://docs.cntd.ru/document/1200156905
Russian National Standard (2017b). 34352-2017 Milk whey - raw material. Specifications. Retrieved from https://docs.cntd.ru/document/1200157889
Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506-527. https://doi.org/10.1080/10408398.2017.1383355
Sharma, R., Diwan, B., Singh, B. P., & Kulshrestha, S. (2022). Probiotic fermentation of polyphenols: potential sources of novel functional foods. Food Production, Processing and Nutrition, 4, 21. https://doi.org/10.1186/s43014-022-00101-4
Sharma, R., Kumari, M., Kumari, A., Sharma, A., Gulati, A., Gupta, M., & Padwad, Y. (2019). A diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second-generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in ageing mice. European Journal of Nutrition, 58(7), 2943-2957. https://doi.org/10.1007/s00394-018-01890-6
Shiretorova, V. G. (2014). Anti-inflammatory activity of Pinus sibirica DU TOUR seed shell extract. Fundamental Research, (12-2), 352-354. Retrieved from https://fundamental-research.ru/ru/article/view?id=36231
Shiretorova, V. G., Tsyrenzhapov, A. V., Khanturgaev, A. G., & Zalutsky, A. V. (2005). Cholagogue activity of the extract from the seed shell of Siberian pine. Successes of Modern Natural Science, (10), 87-88. Retrieved from https://natural-sciences.ru/ru/article/view?id=9371
Stalnaya, I. D., & Garishvili, T. G. (1977). Method for determining malondialdehyde using thiobarbituric acid. Sat. scientific tr. Modern techniques in biochemistry. Medicine, 66-68.
Stiemsma, L. T., Nakamura, R. E., Nguyen, J. G., & Michels, K. B. (2020). Does the consumption of fermented foods modify the human gut microbiota? Journal of Nutrition, 150(7), 1680-1692. https://doi.org/10.1093/jn/nxaa077
Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q., Mayo, B., Westerik, N., & Hutkins, R. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19(1), 184-217. https://doi.org/10.1111/1541-4337.12520
Telyatiev, V. V. (1976). Healing treasures of Eastern Siberia. East Siberian Book Publishing House, 445 p.
Vodnar, D. C., & Socaciu, C. (2012). Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environments and during refrigerated conditions. Chemistry Central Journal, 6(1), 61. https://doi.org/10.1186/1752-153X-6-61
Vorobjeva, L. I., Khodjaev, E. Y., & Vorobjeva N. V. (2008). Propionic acid bacteria as probiotics. Microbial Ecology in Health and Disease, 20(2), 109-112. https://doi.org/10.1080/08910600801994954
Xiong, R. G., Zhou, D. D., Wu, S. X., Huang, S. Y., Saimaiti, A., Yang, Z. J., Shang, A., Zhao, C. N., Gan, R. Y., & Li, H. B. (2022). Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11(18), 2863. https://doi.org/10.3390/foods11182863
Zalutsky, A. V., Kotova, T. I., & Khanturgaev, A. G. (2007). A method for obtaining extractive substances from the shell of Siberian pine seeds. Patent No. 2351641.
Zhang, K., Chen, X., Zhang, L., & Deng, Z. (2020). Fermented dairy foods intake and risk of cardiovascular diseases: A meta-analysis of cohort studies. Critical Reviews in Food Science and Nutrition, 60(7), 1189-1194. https://doi.org/10.1080/10408398.2018.1564019
Zhang, K., Dai, H., Liang, W., Zhang, L., & Deng, Z. (2019). Fermented dairy foods intake and risk of cancer. International Journal of Cancer, 144(9), 2099-2108. https://doi.org/10.1002/ijc.31959