Effect of ferulic acid grafted walnut shell hemicellulose B on the flavor of traditional pickle fermentation
DOI:
https://doi.org/10.5327/fst.00149Palavras-chave:
ferulic acid, walnut shell, hemicellulose B, flavorResumo
To improve the flavor of traditional pickles, hemicellulose B (HCB) was extracted from walnut shell, the protein of which was detected by ultraviolet-visible (UV-Vis) light full wavelength scanning. Then ferulic acid was grafted in the absence of oxygen, and UV-Vis and Fourier transform infrared (FT-IR) were used to verify the branching. HCB and ferulic acid grafted hemicellulose B (FHB) were added to pickles, respectively, and the aroma substances were detected by gas chromatography and mass spectrum (GC-MS) to evaluate the effect of FHB on the aroma substances of pickles. The results showed that the protein in HCB was basically removed after UV-Vis scanning. After UV-Vis and FT-IR identification, FHB was obtained. The GC-MS analysis of aroma substances showed that HCB caused more derivatives of aroma substances in the fermentation process of pickles, and FHB made pickles produce more unique aroma substances during fermentation. This study provided a certain research basis for improving the flavor substances of traditional pickles.
Downloads
Referências
Antonopoulou, I., Sapountzaki, E., Rova, U., & Christakopoulos, P. (2022). Ferulic acid from plant biomass: A phytochemical with promising antiviral properties. Frontiers in Nutrition, 8, 777576. https://doi.org/10.3389/fnut.2021.777576
Carius, B., Silva, H., Silva, A. M., & Pinto, D. C. (2022). Chemical Profiling of Limonium vulgare Mill. Using UHPLC-DAD-ESI/MS2 and GC-MS Analysis. Applied Sciences, 12(13), 6384. https://doi.org/10.3390/app12136384
Chen, C., Zhao, X., Wang, X., Wang, B., Li, H., Feng, J., & Wu, A. (2021). Mutagenesis of UDP‐xylose epimerase and xylan arabinosyl‐transferase decreases arabinose content and improves saccharification of rice straw. Plant Biotechnology Journal, 19(5), 863-865. https://doi.org/10.1111/pbi.13552
Fröhlich, A. C., Bazzo, G. C., Stulzer, H. K., & Parize, A. L. (2022). Synthesis and physico-chemical characterization of quaternized and sulfated xylan-derivates with enhanced microbiological and antioxidant properties. Biocatalysis and Agricultural Biotechnology, 43, 102416. https://doi.org/10.1016/j.bcab.2022.102416
Guo, X., Schwab, W., Ho, C. T., Song, C., & Wan, X. (2022). Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chemistry, 376, 131933. https://doi.org/10.1016/j.foodchem.2021.131933
Haokok, C., Lunprom, S., Reungsang, A., & Salakkam, A. (2023). Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis through simultaneous saccharification and co-fermentation process. Heliyon, 9(7), e17935. https://doi.org/10.1016/j.heliyon.2023.e17935
He, S., Guo, Y., Zhao, J., Xu, X., Song, J., Wang, N., & Liu, Q. (2019). Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. International Journal of Hyperthermia, 35(1), 112-121. https://doi.org/10.1080/02656736.2018.1483534
Hossain, M. S., Shahiduzzaman, M., Rahim, M. A., Paul, M., Sarkar, R., Chaity, F. S., Uddin, M. N., Rana, G. M. M., Yeasmin, M. S., Kibria, A., & Islam, S. (2023). Bioactive properties and organosulfur compounds profiling of newly developed garlic varieties of Bangladesh. Food Chemistry: X, 17, 100577. https://doi.org/10.1016/j.fochx.2023.100577
Hu, B., Pan, J., Chen, L., Zheng, X., & Li, B. (2019). Effect of ferulic acid treatment on postharvest quality and blue mold in tomato fruit. Storage and Process, 19(1), 14-24.
Kose, T., Sharp, P. A., & Latunde-Dada, G. O. (2022). Upregulation of Nrf2 Signalling and the Inhibition of Erastin-Induced Ferroptosis by Ferulic Acid in MIN6 Cells. International Journal of Molecular Sciences, 23(24), 15886. https://doi.org/10.3390/ijms232415886
Lee, M., Song, J. H., Choi, E. J., Yun, Y. R., Lee, K. W., & Chang, J. Y. (2021). UPLC-QTOF-MS/MS and GC-MS characterization of phytochemicals in vegetable juice fermented using lactic acid bacteria from kimchi and their antioxidant potential. Antioxidants, 10(11), 1761. https://doi.org/10.3390/antiox10111761
Li, L., Zhong, Y., Ma, Z., Yang, C., Wei, H., Chen, L., Li, C., Wu, D., Rong, M. Z., & Li, Y. (2018). Methyl ferulic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway. International Journal of Oncology, 53(1), 225-236. https://doi.org/10.3892/ijo.2018.4379
Liu, X., Lin, Q., Yan, Y., Peng, F., Sun, R., & Ren, J. (2019). Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Current Medicinal Chemistry, 26(14), 2430-2455. https://doi.org/10.2174/0929867324666170705113657
Ma, L., Tan, Y., Chen, X., Ran, Y., Tong, Q., Tang, L., Su, W., Wang, X., & Li, X. (2022). Injectable oxidized alginate/carboxylmethyl chitosan hydrogels functionalized with nanoparticles for wound repair. Carbohydrate Polymers, 293, 119733. https://doi.org/10.1016/j.carbpol.2022.119733
Ma, Y., Li, B., Zhang, X., Wang, C., & Chen, W. (2022). Production of gluconic acid and its derivatives by microbial fermentation: Process improvement based on integrated routes. Frontiers in Bioengineering and Biotechnology, 10, 864787.
Moghaddam‐Manesh, M., Ghazanfari, D., Sheikhhosseini, E., & Akhgar, M. (2019). MgO‐Nanoparticle‐Catalyzed Synthesis and Evaluation of Antimicrobial and Antioxidant Activity of New Multi‐Ring Compounds Containing Spiro [indoline‐3, 4′‐[1, 3] dithiine]. ChemistrySelect, 4(31), 9247-9251. https://doi.org/10.1002/slct.201900935
Ou, S., & Kwok, K. C. (2004). Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261-1269. https://doi.org/10.1002/jsfa.1873
Rodríguez-Pérez, C., Quirantes-Piné, R., Amessis-Ouchemoukh, N., Madani, K., Segura-Carretero, A., & Fernández-Gutierrez, A. (2013). A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. Journal of Pharmaceutical and Biomedical Analysis, 77, 167-174. https://doi.org/10.1016/j.jpba.2013.01.026
Saulnier, L., & Thibault, J. F. (1999). Ferulic acid and diferulic acids as components of sugar‐beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396-402. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3%3C396::AID-JSFA262%3E3.0.CO;2-B
Seong, H., Bae, J. H., Seo, J. S., Kim, S. A., Kim, T. J., & Han, N. S. (2019). Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. Journal of Functional Foods, 57, 408-416. https://doi.org/10.1016/j.jff.2019.04.014
Soares-Castro, P., Soares, F., Reis, F., Lino-Neto, T., & Santos, P. M. (2023). Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Applied Microbiology and Biotechnology, 107(16), 5209-5224. https://doi.org/10.1007/s00253-023-12650-w
Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 40(2), 92-100. https://doi.org/10.3164%2Fjcbn.40.92
Sun, D., Zhao, Z., Spiegel, S., Liu, Y., Fan, J., Amrollahi, P., & Hu, T. Y. (2021). Dye-free spectrophotometric measurement of nucleic acid-to-protein ratio for cell-selective extracellular vesicle discrimination. Biosensors and Bioelectronics, 179, 113058. https://doi.org/10.1016/j.bios.2021.113058
Thirukumaran, P., Sathiyamoorthi, R., Shakila Parveen, A., & Sarojadevi, M. (2016). New benzoxazines from renewable resources for green composite applications. Polymer Composites, 37(2), 573-582. https://doi.org/10.1002/pc.23214
Wang, Y. L., Wang, W. K., Wu, Q. C., & Yang, H. J. (2022). The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. Animal Nutrition, 9, 335-344. https://doi.org/10.1016/j.aninu.2022.02.003
Yang, J., Du, Y., Wen, Y., Li, T., & Hu, L. (2003). Sulfation of Chinese lacquer polysaccharides in different solvents. Carbohydrate Polymers, 52(4), 397-403. https://doi.org/10.1016/S0144-8617(02)00330-2
Zhang, C., Jiang, Q., Liu, A., Wu, K., Yang, Y., Lu, J., & Wang, H. (2020). The bead-like Li3V2 (PO4) 3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 237, 116134. https://doi.org/10.1016/j.carbpol.2020.116134
Zhang, R., & Jia, W. (2023). Deciphering the competitive binding interaction of β-lactoglobulin with benzaldehyde and vanillic acid via high-spatial-resolution multi-spectroscopic. Food Hydrocolloids, 141, 108724. https://doi.org/10.1016/j.foodhyd.2023.108724
Zhao, L., Xue, L., Li, B., Wang, Q., Li, B., Lu, S., & Fan, Q. (2018). Ferulic acid reduced histamine levels in the smoked horsemeat sausage. International Journal of Food Science & Technology, 53(10), 2256-2264. https://doi.org/10.1111/ijfs.13814
Zheng, Y., You, X., Guan, S., Huang, J., Wang, L., Zhang, J., & Wu, J. (2019). Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Advanced Functional Materials, 29(15), 1808646. https://doi.org/10.1002/adfm.201808646