Microbial contamination in the ethanol and cachaça fermentation process: impacts and applications

Autores

  • Amanda Cristina Dias de OLIVEIRA Universidade de São Paulo, Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, SP, Brazil. https://orcid.org/0000-0001-6991-6218
  • Carlos Augusto Fernandes de OLIVEIRA Universidade de São Paulo, Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, SP, Brazil. https://orcid.org/0000-0001-5779-5287
  • Eliana Setsuko KAMIMURA Universidade de São Paulo, Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, SP, Brazil. https://orcid.org/0000-0002-9686-7519

DOI:

https://doi.org/10.5327/fst.80422

Palavras-chave:

cachaça, ethanol, alcoholic fermentation, contaminants, lactic bacteria

Resumo

Brazil is a major powerhouse in the production of sugarcane. Consequently, several supply chains use it as a raw material, such as the food sector, mainly in the production of sugar and beverages, such as cachaça, and the biofuels sector, with the production of ethanol, an important product for the Brazilian economy. The production of cachaça and ethanol share an important stage known as fermentation, a fundamental process that defines the quality and yield of the alcoholic fermentation product, which is achieved using Saccharomyces cerevisiae. Different industrial strains have been selected to promote alcoholic fermentation efficiently and with high productivity. However, it is possible that microorganisms from various stages of the production chain reach the fermentation phase, compromising it. Contaminants can vary from different genera of yeasts, including Dekkera and Pichia, to bacteria, mainly belonging to the Lactobacillaceae family, which produce lactic acid. Contaminating microorganisms affect the fermentation stage and, as a consequence, the quality of the produced cachaça or the production efficiency of ethanol. Recent studies have shown that these contaminants, in addition to resulting in negative aspects of sugarcane fermentation, can also present interesting physiological characteristics that can be applied in bioprocesses in other productive sectors or to improve fermentation strains.

Downloads

Não há dados estatísticos.

Referências

Alcarde, A. R. (2017). Cachaça: Ciência, tecnologia e arte (2nd ed). Edgard Blucher, 95 p.

Alcarde, A. R., Monteiro, B. M. S., & Belluco, A. E. S. (2012). Composição química de aguardentes de cana-de-açúcar fermentadas por diferentes cepas de levedura Saccharomyces cerevisiae. Química Nova, 35(8), 1612-1618. https://doi.org/10.1590/S0100-40422012000800022

Amorim, H. V., Lopes, M. L., Oliveira, J. V. C., Buckeridge, M. S., & Goldman, G. H. (2011). Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology, 91, 1267-1275. https://doi.org/10.1007/s00253-011-3437-6

Badotti, F., Moreira, A. P. B., Chimetto-Tonon, L. A., Lucena, L., Gomes, F. C. O., Kruger, R., Thompson, C. C., Morais-Jr., M. A., Rosa, C. A., & Thompson, F. L. (2014). Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and ethanol fermentation processes. Antonie van Leeuwenhoek, 106, 1259-1267. https://doi.org/10.1007/s10482-014-0296-z

Bassi, A. P. G., Meneguello, L., Paraluppi, A. L., Sanches, B. C. P., & Ceccato-Antonini, S. R. (2018). Interaction of Saccharomyces cerevisiae – Lactobacillus fermentum – Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie van Leeuwenhoek, 111(3), 1661-1672. https://doi.org/10.1007/s10482-018-1056-2

Basso, T. O., Eggleston, G., Amorim, H. V., Lopes, M. L., Gomes, F. S., & Basso, L. C. (2014). Homo-and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek, 105, 169-177. https://doi.org/10.1007/s10482-013-0063-6

Branco, P., Kemsawasd, V., Santos, L., Diniz, M., Caldeira, J., Almeida, M. G., Arneborg, N., & Albergaria, H. (2017). Saccharomyces cerevisiae accumulates GAPDH-derived peptides on its cell surface that induce death of non-Saccharomyces yeasts by cell-to-cell contact. FEMS Microbiologu Ecology, 93(5), fix055. https://doi.org/10.1093/femsec/fix055

Branco, P., Sabir, F., Diniz, M., Carvalho, L., Albergaria, H., & Pista, C. (2019). Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 103, 3073-3083. https://doi.org/10.1007/s00253-019-09657-7

Bonatelli, M. L., Quecine, M. C., Silva, M. S., & Labate, C. A. (2017). Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiology Letters, 364(17), fnx159. https://doi.org/10.1093/femsle/fnx159

Brexó, R. P., Andrietta, M. G. S., & Santa’ana, A. S. (2018). Artisanal cachaça and brewer’s spent grain as sources of yeasts with promising biotechnological properties. Journal of Applied Microbiology, 125(2), 409-421. https://doi.org/10.1111/jam.13778

Carneiro, H. (2020). From fermented and other traditional indigenous drinks to cachaca and coffee: a brief history of drinks in Brazil from the colonial era to the republican period. Bresil-S, 17. https://doi.org/10.4000/bresils.6612

Carvalho, F. P., Duarte, W. F., Dias, D. R., Piccoli, R. H., & Schwan, R. F. (2015). Interaction of Saccharomyces cerevisiae and Lactococcus lactis in the fermentation and quality of artisanal cachaça. Acta Scientiarum. Agronomy, 37(1), 51-60. https://doi.org/10.4025/actasciagron.v37i1.18397

Carvalho, R. S., Cruz, I. A., Américo-Pinheiro, J. H. P., Soriano, R. N., Souza, R. L., Bilal, M., Iqbal, H. M. N., Bharagava, R. N., & Ferreira, L. F. R. (2020). Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during co-culture fermentation. Biocatalysis and Agricultural Biotechnology, 29, 101756. https://doi.org/10.1016/j.bcab.2020.101756

Carvalho-Netto, O. V., Carazzolle, M. F., Mofatto, L. S., Teixeira, P. J. P. L., Noronha, M. F., Calderón, L. A. L., Mieczkowski, P. A., Argueso, J. L., & Pereira, G. A. G. (2015). Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microbial Cell Factories, 14(13), 1-13. https://doi.org/10.1186/s12934-015-0196-6

Chamnipa, N., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian Journal of Microbiology, 49(2), 378-391. https://doi.org/10.1016/j.bjm.2017.09.002

Companhia Nacional de Abastecimento (CONAB) (2021). Acompanhamento da safra brasileira cana-de-açúcar, safra 2020/21. Boletim da Safra da Cana-de-Açúcar, 7(4), 1-57. Retrieved from https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar

Conceição, L. E. F. R., Saraiva, M. A. F., Diniz, R. H. S., Oliveira, J., Barbosa, G. D., Alvarez, F., Correa, L. F. M., Mezadri, H., Coutrim, M. X., Afonso, R. J. C. F., Lucas, C., Castro, I. M., & Brandão, R. L. (2015). Biotechnological potential of yeast isolates from cachaça: the Brazilian spirit. Journal of Industrial Microbiology and Biotechnology, 42(2), 237-246. https://doi.org/10.1007/s10295-014-1528-y

Costa, M. A. S., Cerri, B. C., & Ceccato-Antonini, S. R. (2018). Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process forfuel ethanol production. Letters in Applied Microbiology, 66(1), 77-85. https://doi.org/10.1111/lam.12819

Costa, O. Y. A., Souto, B. M. S., Tupianambá, D. D., Bergmann, J. C., Kyaw, C. M., Kruger, R. H., Barreto, C. C., & Quirino, B. F. (2015). Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture‐independent method. Journal of Industrial Microbiology and Biotechnology, 42(1), 73-84. https://doi.org/10.1007/s10295-014-1533-1

Ding, Y., Niu, Y., Chen, Z., Dong, S., Li, H. (2021). Discovery of novel Lactobacillus plantarum co-existence-associated influencing factor(s) on Saccharomyces cerevisiae fermentation performance. LWT - Food Science and Technology, 135, 110268. https://doi.org/10.1016/j.lwt.2020.110268

Firmino, F., Porcellato, D., Cox, M., Suen, G., Broadbent, J. R., & Steele, J. L. (2020). Characterization of microbial communities in ethanol biorefineries. Journal of Industrial Microbiology and Biotechnology, 47(2), 183-195. https://doi.org/10.1007/s10295-019-02254-7

Gabriel, A. V. M. D., Verrume-Bernardi, M. R., Margarido, L. A. C., Borges, M. T. M. R., Nassu, R. T., Lavorenti, N. A., & Ceccato-Antonini, S. R. (2012). Effect of the spontaneous fermentation and the ageing on the chemo-sensory quality of Brazilian organic cachaça. Ciência Rural, 42(5), 918-925. https://doi.org/10.1590/S0103-84782012000500026

Gomes, F. C. O., Silva, C. L. C., Vianna, C. R., Lacerda, I. C. A., Borelli, B. M., Nunes, A. C., Franco, G. R., Mourão, M. M., & Rosa, C. A. (2010). Identification of lactic acid bacteria associated with traditional cachaça fermentations. Brazilian Journal of Microbiology, 41(2), 486-492. https://doi.org/10.1590/S1517-83822010000200031

He, X., Liu, B., Xu, Y., Chen, Z., & Li, H. (2021). Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 105, 2597-2611. https://doi.org/10.1007/s00253-021-11198-x

Lacerda, I. C. A., Gomes, F. C. O., Borelli, B. M., Faria-Junior., C. L. L., Franco, G. R., Mourão, M. M., Morais, P. B., & Rosa, C. A. (2011). Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis. Brazilian Journal of Microbiology, 42(2), 650-657. https://doi.org/10.1590/S1517-83822011000200029

Lara, C. A., Santos, R. O., Cadete, R. M., Ferreira, C., Marques, S., Girio, F., Oliveira, E. S., Rosa, C. A., & Fonseca, C. (2014). Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie van Leeuwenhoek, 105, 1107-1119. https://doi.org/10.1007/s10482-014-0172-x

Limtong, S., Kaewwichian, R., Yongmanitchai, W., & Kawasaki, H. (2014). Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World Journal of Microbiology and Biotechnology, 30, 1785-1796. https://doi.org/10.1007/s11274-014-1602-7

Lopes, M. L., Paulillo, S. C. L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., Neto, H. B. A., & Amorim, H. V. (2016). Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, 47(Suppl. 1), 64-76. https://doi.org/10.1016/j.bjm.2016.10.003

Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological interventions in beverage production. In A. M. Grumezescu & A. M. Holban (Eds.), Biotechnological Progress and Beverage Consumption. Academic Press, pp. 1-37. https://doi.org/10.1016/B978-0-12-816678-9.00001-1

Ministério da Agricultura, Pecuária e Abastecimento (MAPA) (2019). Dados de registro de cachaça e aguardentes. Ministério da Agricultura, Pecuária e Abastecimento. Retrieved from https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-tem-mais-de-4-7-mil-marcas-de-cachacas-e-aguardentes/anuariocachaca2020web_ISBN1.pdf

Nel, S., Davis, S. B., Endo, A., & Dicks, L. M. T. (2019). Microbial Diversity Profiling of Polysaccharide (gum)-Producing Bacteria Isolated from a South African Sugarcane Processing Factory. Current Microbiology, 76, 527-535. https://doi.org/10.1007/s00284-018-01625-0

Pandey, A. K., Kumar, M., Kumari, S., Kumari, P., Yusuf, F., Jakeer, S., Naz, S., Chandna, P., Bhatnagar, I., & Gaur, N. A. (2019). Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnology for Biofuels, 12, 40. https://doi.org/10.1186/s13068-019-1379-x

Paraluppi, A. L., & Ceccato-Antonini, S. R. (2019). High doses of potassium metabisulphite are required to control the growth of native bacteria and yeasts from sugarcane juice. Acta Scientiarum. Technology, 41, 36779. https://doi.org/10.4025/actascitechnol.v41i1.36779

Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511-518. https://doi.org/10.1016/j.anres.2018.11.017

Portugal, C. B., Alcarde, A. R., Bortoletto, A. M., & Silva, A. P. (2016). The role of spontaneous fermentation for the production of cachaça: a study of case. European Food Research and Technology, 242, 1587-1597. https://doi.org/10.1007/s00217-016-2659-3

Reis, V. R., Bassi, A. P. G., Cerri, B. C., Almeida, A. R., Carvalho, I. G. B., Bastos, R. G., & Ceccato Antonini, S. R. (2018). Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express, 8, 23. https://doi.org/10.1186/s13568-018-0556-9

Reis, V. R., Bassi, A. P. G., Silva, J. C. G., & Ceccato-Antonini, S. R. (2013). Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Brazilian Journal of Microbiology, 44(4), 1121-1131. https://doi.org/10.1590%2FS1517-83822014005000020

Rodrigues Filho, S., & Juliani, A. J. (2013). Sustentabilidade da produção de etanol de cana-de-açúcar no Estado de São Paulo. Estudos Avançados, 27(78), 195-212. https://doi.org/10.1590/S0103-40142013000200013

Santos, C. O., Silva, M. C. S., & Castiglioni, G. L. (2021). Industrial yeast strains competence in mixed culture with wild flocculent yeast. Biocatalysis and Agricultural Biotechnology, 36, 102144. https://doi.org/10.1016/j.bcab.2021.102144

Tiukova, I., Eberhard, T., & Passoth, V. (2014). Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Biotechnology and Applied Biochemistry, 61(1), 40-44. https://doi.org/10.1002/bab.1135

Torres-Guardado, R., Esteve-Zarzoso, B., Reguant, C., & Bordons, A. (2022). Microbial interactions in alcoholic beverages. International Microbiology, 25, 1-15. https://doi.org/10.1007/s10123-021-00200-1

Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030

Downloads

Publicado

2023-07-20

Como Citar

OLIVEIRA, A. C. D. de, OLIVEIRA, C. A. F. de, & KAMIMURA, E. S. (2023). Microbial contamination in the ethanol and cachaça fermentation process: impacts and applications. Food Science and Technology, 43. https://doi.org/10.5327/fst.80422

Edição

Seção

Artigos de Revisão