Improving craft beer style classification through physicochemical determination and the application of deep learning techniques
DOI:
https://doi.org/10.5327/fst.00071Keywords:
physicochemical attributes, beer, predictive analysisAbstract
The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers' new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers.
Downloads
References
Bamforth, C. W. (2003). Refining matters-downstream processing. In: C. W. Bamforth (ed.). Beer: Tap into the Art and Science of Brewing. Oxford University Press.
Bamforth, C. W. (2009). Beer: A Quality Perspective. Academic Press.
Beer Judge Certification Program (2021). Style Guidelines. Retrieved from https://www.bjcp.org/bjcp-style-guidelines
Bowles, M. (2020). Machine Learning in Python® Essential Techniques for Predictive Analysis. John Wiley & Sons.
Briggs, D., Boulton, C., Brookes, P., & Stevens, R. (2004). Beer maturation and treatments. In D. Briggs, C. Boulton, P. Brookes & R. Stevens (eds.). Brewing: science and practice (p. 543-588). Woodhead.
Chaco Día por Día (2019). Exitosa cuarta edición del Festival de la Cerveza Artesanal en Resistencia. Chaco Día por Día. Retrieved from https://www.chacodiapordia.com/2019/09/29/exitosa-cuarta-edicion-del-festival-de-la-cerveza-artesanal-en-resistencia/
Chan, M. Z. A., Chua, J. Y., Toh, M., & Liu, S.Q. (2019). Survival of probiotic strain Lactobacillus paracasei L26 during cofermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiology, 82, 541-550. https://doi.org/10.1016/j.fm.2019.04.001
Código Alimentario Argentino (2007). Retrieved from http://www.anmat.gov.ar/webanmat/codigoa/Capitulo_XIII_BebFermentadas_2007-11.pdf
Dietz, C., Cook, D., Wilson, C., Oliveira, P., & Ford, R. (2021). Exploring the multisensory perception of terpene alcohol and sesquiterpene rich hop extracts in lager style beer. Food Research International, 148, 110598. https://doi.org/10.1016/j.foodres.2021.110598
Gasiński, A., Kawa-Rygielska, J., Paszkot, J., Pietrzak, W., Śniegowska, J., & Szumny, A. (2022). Second life of hops: Analysis of beer hopped with hop pellets previously used to dry-hop a beer. LWT, 159, 113186. https://doi.org/10.1016/j.lwt.2022.113186
Gómez Pamies, L. C, Lataza Rovaletti, M. M., Martinez Amezaga, N. M. J., & Benítez E. I. (2021). The impact of pirodextrin addition to improve physicochemical parameters of sorghum beer. LWT- Food Science and Technology, 149, 112040. https://doi.org/10.1016/j.lwt.2021.112040
Gulli, A., & Pal, S. (2017). Implement neural networks with Keras on Theano and Tensor Flow. In A. Gulli & S. Pal (eds.). Deep Learning with Keras (p. 50-53). Birmingham.
Harrington, R. J., von Freyberg, B., Ottenbacher, M. C., & Schmidt, L. (2017). The different effects of dis-satisfier, satisfier and delighter attributes: Implications for Oktoberfest and beer festivals. Tourism Management Perspectives, 24, 166-176. https://doi.org/10.1016/j.tmp.2017.09.003
Holbrook, C. (2019). Brewhouse operations. In C. Smart (ed.). The Craft Brewing Handbook. Woodhead.
Howe, S. (2019). Raw materials. In C. Smart (ed.). The Craft Brewing Handbook. Woodhead.
Jaeger, S. R., Worch, T., Phelps, T., Jin, D., & Cardello, A. V. (2020). Preference segments among declared craft beer drinkers: Perceptual, attitudinal and behavioral responses underlying craft-style vs. traditional style flavor preferences. Food Quality and Preference, 82, 103884. https://doi.org/10.1016/j.foodqual.2020.103884
Lafontaine, S., Varnum, S., Roland, A., Delpech, S., Dagan, L., Vollmer, D., Kishimoto, T., & Shellhammer, T. (2018). Impact of harvest maturity on the aroma characteristics and chemistry of Cascade hops used for dry-hopping. Food Chemistry, 278, 228-239. https://doi.org/10.1016/j.foodchem.2018.10.148
Mitteleuropäische Brautechnische Analysenkommission (MEBAK) (2013). Wort, Beer, Beer-Based Beverages. Hans Carl Verlag.
Mongi, C. (2019). Oktoberfest-una-fiesta-tradicional-que-le-escapa-crisis-economica Una nueva edición de la fiesta de la cerveza en Villa General Belgrano. La Voz. Retrieved from https://www.lavoz.com.ar/ciudadanos/oktoberfest-una-fiesta-tradicional-que-le-escapa-crisis-economica
Moura-Nunes, N., Cazaroti Brito, T. Dias da Fonseca, N., Fernandes de Aguiar, P., Monteiro, M., Perrone, D., & Guedes Torres, A. (2016). Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chemistry, 199, 105-113. https://doi.org/10.1016/j.foodchem.2015.11.133
Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., & Cook, D. (2017). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215-224. https://doi.org/10.1016/j.foodchem.2017.03.031
Opperman, A. (2019). What is Deep Learning and How does it work? Retrieved from https://builtin.com/machine-learning/deep-learning
Zyner, A., Worrall, S., & Nebot, E. (2018). A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections. IEEE Robotics and Automation Letters, 3(3), 1759-1764. https://doi.org/10.1109/LRA.2018.2805314