Ten years of research on bioactive peptides in Brazil: a scientometric analysis

Authors

  • Edson Flávio Teixeira da SILVA Universidade Federal Rural de Pernambuco, Department of Animal Morphology and Physiology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0003-4122-8514
  • Maria Alane Pereira BARBOSA Universidade Federal do Agreste de Pernambuco, Laboratory of Microbiology, Enzymatic Technology and Bioproducts, Garanhuns, Pernambuco, Brazil. https://orcid.org/0000-0003-2986-944X
  • Thayná Alícia de Figueirêdo MARINHO Universidade Federal do Agreste de Pernambuco, Laboratory of Microbiology, Enzymatic Technology and Bioproducts, Garanhuns, Pernambuco, Brazil. https://orcid.org/0000-0001-6310-2045
  • Gleidson Costa LIMA Universidade Federal do Agreste de Pernambuco, Laboratory of Microbiology, Enzymatic Technology and Bioproducts, Garanhuns, Pernambuco, Brazil.
  • Wellington Leal dos SANTOS Universidade Federal Rural de Pernambuco, Department of Animal Morphology and Physiology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0001-6257-7743
  • Maria Tamires Alves ESPINDOLA Universidade Federal Rural de Pernambuco, Department of Animal Morphology and Physiology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0003-4532-1126
  • Larice Bruna Ferreira SOARES Universidade Federal Rural de Pernambuco, Department of Animal Morphology and Physiology, Recife, Pernambuco, Brazil. https://orcid.org/0000-0002-5019-0071
  • José Erick Galindo GOMES Universidade Federal do Agreste de Pernambuco, Laboratory of Microbiology, Enzymatic Technology and Bioproducts, Garanhuns, Pernambuco, Brazil. https://orcid.org/0000-0001-5444-8714
  • Keila Aparecida MOREIRA Universidade Federal do Agreste de Pernambuco, Laboratory of Microbiology, Enzymatic Technology and Bioproducts, Garanhuns, Pernambuco, Brazil. https://orcid.org/0000-0002-7715-9285

DOI:

https://doi.org/10.5327/fst.131022

Keywords:

bioactivity, biopeptide, Brazilian researchers, prospection, proteins

Abstract

Peptides are biomolecules composed of amino acids linked through peptide bonds present in proteins. These peptides may have biological activities associated with their secondary structure, especially when released from the original protein sequence. The prospect of these biomolecules is the subject of study and research in various sectors, including the food and pharmaceutical industries. This is due to the possibility of using them as substitutes for traditionally marketed drugs, especially those with restrictive legislation on their use, or losing their effectiveness. A scientometric analysis of studies published from 2011 to 2021 by Brazilian researchers demonstrated the growing interest in basic research involving bioactive peptides from numerous protein sources, including food-based and agro-industrial residues. The antioxidant activity, followed by the antimicrobial potential, has been the most studied property of these biomolecules. Several other activities such as anxiolytic, anti-adipogenic, anticoagulant, anticonvulsant, antisclerotic, and cytoregulatory actions have been reported in a limited number of studies, highlighting the potential application of these biomolecules in the development of new products.

Downloads

Download data is not yet available.

References

Acquah, C., Chan, Y. W., Pan, S., Agyei, D., & Udenigwe, C. C. (2019). Structure-informed separation of bioactive peptides. Journal of Food Biochemistry, 43(1), e12765. https://doi.org/10.1111/jfbc.12765

Aguilar, J. G. S., Souza, A. K. S., & Castro, R. J. S. (2020). Enzymatic Hydrolysis of Chicken Viscera to Obtain Added‑Value Protein Hydrolysates with Antioxidant and Antihypertensive Properties. International Journal of Peptide Research and Therapeutics, 26, 717-725. https://doi.org/10.1007/s10989-019-09879-3

Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. International Journal of Molecular Sciences, 23(3), 1445-1475. https://doi.org/10.3390/ijms23031445

Alberto-Silva, C., Franzin, C. S., Gilio, J. M., Bonfim, R. S., & Querobino, S. M. H. (2020). Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. Journal of Venomous Animals and Toxins Including Tropical Diseases, 26, e20200007. https://doi.org/10.1590/1678-9199-JVATITD-2020-0007

Alberto-Silva, C., Portaro, F. C. V., Kodama, R. T., Pantaleão, H. Q., Rangel, M., Nihei, K. I., & Konno, K. (2021). Novel neuroprotective peptides in the venom of the solitary scoliid wasp Scolia decorata ventralis. Journal of Venomous Animals and Toxins Including Tropical Diseases, 27, 1-14. https://doi.org/10.1590/1678-9199-jvatitd-2020-0171

Alves, N. E. G., Vasconcelos, C. M., Bassinello, P. Z., Mejia, E. G., & Martino, H. S. D. (2016). Digestion protein isolate from fresh and stored Carioca beans reduced markers of atherosclerosis in oxidized LDL-induced THP-1 macrophages. Journal of Functional Foods, 24, 97-111. https://doi.org/10.1016/j.jff.2016.03.027

Amorim, F. G., Coitinho, L. B., Dias, A. T., Friques, A. G. F., Monteiro, B. L., Rezende, L. C. D., Pereira, T. M. C., Campagnaro, B. P., Pauw, E., Vasquez, E. C., & Quinton, L. (2019). Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chemistry, 282, 109-119. https://doi.org/10.1016/j.foodchem.2019.01.010

Amorim, M., Pereira, J. O., Silva, L. B., Ormenese, R. C. S. C., Pacheco, M. T. B., & Pintado, M. (2018). Use of whey peptide fraction in coated cashew nut as functional ingredient and salt replacer. LWT – Food Science and Technology, 92, 204-211. https://doi.org/10.1016/j.lwt.2017.12.075

Anaya, K., Podszun, M., Franco, O. L., Gadelha, C. A. A., & Frank, J. (2020). The coconut water antimicrobial peptide CnAMP1 is taken up to intestinal cells but does not alter Pglycoprotein expression and activity. Plant Foods for Human Nutrition, 75, 396-403. https://doi.org/10.1007/s11130-020-00826-y

Arruda, D. C., Oliceira, T. D., Cursino, P. H. F., Maia, V. S. C., Berzaghi, R., Travassos, L. R., & Tada, D. B. (2017). Inhibition of melanoma metastasis by dual-peptide PLGA NPS. Wiley Peptide Science, 108(5), e23029. https://doi.org/10.1002/bip.23029

Arruda, M. S., Silva, F. O., Egito, A. S., Silva, T. M. S., Lima-Filho, J. L., Porto, A. L. F., & Moreira, KA. (2012). New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT - Food Science and Technology, 49(1), 73-79. https://doi.org/10.1016/j.lwt.2012.04.001

Assis, A. B., Santos, C., Dutra, F. P., Motta, A. O., Costa, F. S., Navas, C. A., Magalhães, B. S., & Barreto, C. C. (2016). Assessing antibacterial potential of components of Phyllomedusa distincta skin and its associated dermal microbiota. Journal of Chemical Ecology, 42, 139-148. https://doi.org/10.1007/s10886-016-0665-3

Baptista, D. P., Galli, B. D., Cavalheiro, F. G., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87, 75-83. https://doi.org/10.1016/j.idairyj.2018.08.001

Baptista, D. P., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2020a). Peptide profile and angiotensin-converting enzyme inhibitory activity of Prato cheese with salt reduction and Lactobacillus helveticus as an adjunct culture. Food Research International, 133, 109190. https://doi.org/10.1016/j.foodres.2020.109190

Baptista, D. P., Salgaço, M. K., Sivieri, K., & Gigante, M. N. (2020b). Use of static and dynamic models to simulate Prato cheese gastrointestinal digestion: effect of Lactobacillus helvitucus LH-B02 addition on peptides bioaccessibility. LWT - Food Science and Technology, 134, 110229. https://doi.org/10.1016/j.lwt.2020.110229

Barati, M., Javanmardi, F., Jabbari, M., Mokari-Yamchi, A., Farahmand, F., Eş, I., Farhadnejad, H., Davoodi, S. H., & Khaneghah, A. M. (2020). An in silico model to predict and estimate digestion-resistant and bioactive peptide content of dairy products: A primarily study of a time-saving and affordable method for practical research purposes. LWT - Food Science and Technology, 130, 109616. https://doi.org/10.1016/j.lwt.2020.109616

Barbosa, E. A., Oliveira, A., Plácido, A., Socodato, R., Portugal, C. C., Mafud, A. C., Ombredane, A. S., Moreira, D. C., Vale, N., Bessa, L. J., Joanitti, G. A., Alves, C., Gomes, P., Delerue-Matos, C., Mascarenhas, Y. P., Marani, M. M., Relvas, J. B., Pintado, M., & Leite, J. R. S. A. (2018). Structure and function of a novel antioxidant peptide from the skin of tropical frogs. Free Radical Biology and Medicine, 115, 68-79. https://doi.org/10.1016/j.freeradbiomed.2017.11.001

Bardin, L. (Ed.). (2006). Análise de conteúdo. Edição 70.

Bassan, J. C., Bezerra, T. M. S., Peixoto, G., Cruz, C. Z. P., Galán, J. P. M., Vaz, A. B. S., Garrido, S. S., Filice, M., & Monti, R. (2016). Immobilization of trypsin in lignocellulosic waste material to produce peptides with bioactive potential from whey protein. Materials, 9(5), 357-377. https://doi.org/10.3390/ma9050357

Bertolini, D., Jiménez, M. E. P., Santos, C., Corrêa, A. P. F., & Brandelli, A. (2021). Microbial bioconversion of feathers into antioxidant peptides and pigments and their liposome encapsulation. Biotechnology Letters, 43, 835-844. https://doi.org/10.1007/s10529-020-03067-w

Bezerra, T. K. A., Estévez, M., Lacerda, J. T., Dias, M., Juliano, M., Mendes, M. A., Morgano, M., Pacheco, M. T., & Madruga, M. (2020). Chicken combs and wattles as sources of bioactive peptides: Optimization of hydrolysis, identification by LC-ESI-MS2 and bioactivity assessment. Molecules, 25(7), 1698. https://doi.org/10.3390/molecules25071698

Bezerra, T. K. A., Lacerda, J. T. J. G., Salu, B. R., Oliva, M. L. V., Juliano, M. A., Pacheco, M. T. B., & Madruga, M. S. (2019). Identification of Angiotensin I-Converting Enzyme-Inhibitory and Anticoagulant Peptides from Enzymatic Hydrolysates of Chicken Combs and Wattles. Journal of Medicinal Food, 22(12), 1294-1300. https://doi.org/10.1089/jmf.2019.0066

Bezerra, V. S., Campos, J. F., Silva, R. A., Porto, T. S., Lima Filho, J. L., & Porto, A. L. F. (2013). Biotechnological richness of the northeastern semi-arid region: Antioxidant activity of casein hydrolysates from Moxotó goat milk (Capra hircus Linnaeus, 1758) obtained by papain action. Food Science and Technology, 33(3), 513-520. https://doi.org/10.1590/S0101-20612013005000074

Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2019). A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26, 139-150. https://doi.org/10.1007/s10989-019-09823-5

Boelter, J. F., Brandelli, A., Meira, S. M. M., Göethel, G., & Garcia, S. C. (2020). Toxicology study of nanoclays adsorbed with the antimicrobial peptide nisin on Caenorhabditis elegans. Applied Clay Science, 188, 105490. https://doi.org/10.1016/j.clay.2020.105490

Brand, G. D., Magalhães, M. T. Q., Tinoco, M. L. P., Aragão, F. J. L., Nicoli, J., Kelly, S. M., Cooper, A., & Bloch Jr., C. (2012). Probing protein sequences as sources for encrypted antimicrobial peptides. Plos One, 7(9), e45848. https://doi.org/10.1371/journal.pone.0045848

Brand, G. D., Ramada, M. H. S., Genaro-Mattos, T. C., & Bloch Jr., C. (2018). Towards an experimental classification system for membrane active peptides. Scientific Reports, 8, 1194. https://doi.org/10.1038/s41598-018-19566-w

Brand, G. D., Ramada, M. H. S., Manickchand, J. R., Correa, F., Ribeiro, D. J. S., Santos, M. A., Vasconcelos, A. G., Abrão, F. Y., Prates, M. V., Murad, A. M., Fh, J. L. C., Leite, J. R. S. A., Magalhães, K. G., Oliveira, A. L., & Bloch Jr., C. (2019). Intragenic antimicrobial peptides (IAPs) from human proteins with potent antimicrobial and anti-inflammatory activity. Plos One, 14(8), e0220656. https://doi.org/10.1371/journal.pone.0220656

Brandelli, A., Daroit, A. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149-161. https://doi.org/10.1016/j.foodres.2015.01.016

Callegaro, K., Welter, N., & Daroit, D. J. (2018). Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochemistry, 75, 1-9. https://doi.org/10.1016/j.procbio.2018.09.002

Câmara, G. A., Nishiyama, M. Y., Kitano, E. S., Oliveira, U. C., Silva Jr., P. I., Junqueira-de-Azevedo, I. L., & Tashima, A. K. (2020). A Multiomics approach unravels new toxins with possible in silico antimicrobial, antiviral, and antitumoral activities in the venom of Acanthoscurria rondoniae. Frontiers in Pharmacology, 11, e1075. https://doi.org/10.3389/fphar.2020.01075

Camargo, R. B., Batisti, D. L. S., Souza, V. K. G., Neumann, M., & Moritz, C. M. F. (2021). Reflexões sobre a importância do aporte financeiro para a pesquisa científica brasileira com produtos naturais. Research, Society and Development, 10(5), e43110515001. https://doi.org/10.33448/rsd-v10i5.15001

Campeiro, J. D. A., Neshich, I. P., Sant’Anna, O. A., Lopes, R., Ianzer, D., Assakura, M. T., Neshich, G., & Hayashi, M. A. F. (2015). Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain - Potential BPP-like precursor protein? Biochemical Pharmacology, 96(3), 202-215. https://doi.org/10.1016/j.bcp.2015.05.012

Campos, M. I. F., Lima, A. K. S., Lopes Neto, J. H. P., Oliveira, J. M. C, & Gadelha, T. S. (2022). Artigo de revisão: Propriedades biológicas das proteínas e peptídeos do soro do leite caprino. Research, Society and Development, 11(1), e6611124340. https://doi.org/10.33448/rsd-v11i1.24340

Cancelarich, N. L., Wilke, N., Fanini, M. L., Moreira, D. C., Pérez, L. O., Barbosa, E. A., Plácido, A., Socodato, R., Portugal, C. C., Relvas, J. B., Torre, B. G. L., Albericio, F., Basso, N. G., Leite, J. R., & Marani, M. M. (2020). Somuncurins: bioactive peptides from skin of the endangered endemic Patagonian frog Pleurodema somuncurense. Journal of Natural Products, 83(4), 972-984. https://doi.org/10.1021/acs.jnatprod.9b00906

Candido, M. R., Marques, D., Oliveira, V. E, & Biroli, F. (2021). As ciências sociais na pandemia da Covid-19: rotinas de trabalho e desigualdades. Sociologia & Antropologia, 11(Spe.), 31-65. https://doi.org/10.1590/2238-38752021v11esp2

Carvalho, D. C., Kuniyoshi, A. K., Kodama, R. T., Oliveira, A. K., Serrano, S. M. T., Tambourgi, D. V., & Portaro, F. V. (2014). Neuropeptide Y family-degrading metallopeptidases in the Tityus serrulatus venom partially blocked by commercial antivenoms. Toxicological Sciences, 142(2), 418-426. https://doi.org/10.1093/toxsci/kfu193

Castro, R. J. S., & Sato, H. H. (2016). Simultaneous hydrolysis of proteins from different sources to enhance their antibacterial properties through the synergistic action of bioactive peptides. Biocatalysis and Agricultural Biotechnology, 8, 209-212. https://doi.org/10.1016/j.bcab.2016.09.014

Cavalheiro, F. G., Baptista, D. P., Galli, B. D., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2020). High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. Food Chemistry, 333, 127482. https://doi.org/10.1016/j.foodchem.2020.127482

Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Research International, 2014, 608979. https://doi.org/10.1155/2014/608979

Chaparro, E., & Silva Junior, P. I. (2016). Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis. International Journal of Antimicrobial Agents, 48(3), 277-285. https://doi.org/10.1016/j.ijantimicag.2016.05.015

Coelho, M. S., Soares-Freitas, R. A. M., Arêas, J. A. G., Gandra, E. A., & Salas-Mellado, M. I. M. (2018). Peptides from chia present antibacterial activity and inhibit colesterol synthesis. Plant Foods for Human Nutrition, 73, 101-107. https://doi.org/10.1007/s11130-018-0668-z

Conceição, K., Cena, G. L., Silva, V. A., Neto, X. A. O., Andrade, V, M., Tada, D. B., Richardson, M., Andrade, S. A., Dias, S. A., Castanho, M. A. R. B., & Lopes-Ferreira, M. (2020). Design of bioactive peptides derived from CART sequence isolated from the toadfish Thalassophryne nattereri. 3 Biotech, 10, 162. https://doi.org/10.1007/s13205-020-2151-4

Corrales-Ureña, Y. R., Souza-Schiaber, Z., Lisboa-Filho, P. N., Marquenet, F., Noeske, P. M., Gätjen, L., & Rischka, K. (2020). Functionalization of hydrophobic surfaces with antimicrobial peptides immobilized on a biointerfactant layer. Royal Society of Chemistry, 10(1), 376-386. https://doi.org/10.1039/c9ra07380a

Corrêa, A. P. F., Bertolini, D., Lopes, N. A., Veras, F. F., Gregory, G., & Brandelli, A. (2019). Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT - Food Science and Technology, 101, 107-112. https://doi.org/10.1016/j.lwt.2018.11.036

Corrêa, A. P. F., Daroit, D. J., Coelho, J., Meira, S. M. M., Lopes, F. C., Segalin, J., Risso, P. H., & Brandelli, A. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture, 91(12), 2247-2254. https://doi.org/10.1002/jsfa.4446

Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. https://doi.org/10.1016/j.peptides.2014.09.001

Coutinho-Neto, A., Caldeira, C. A. S., Souza, G. H. M. F., Zaqueo, K. D., Kayano, A. M., Silva, R. S., Zuliani, J. P., Soares, A. M., Stábeli, R. G., & Calderon, L. A. (2013). ESI-MS/MS identification of a bradykinin-potentiating peptide from Amazon Bothrops atrox Snake Venom using a hybrid Qq-oaTOF mass spectrometer. Toxins, 5(2), 327-335. https://doi.org/10.3390/toxins5020327

Crusca Jr., E. C., Basso, L. G. M., Altei, W. F., Marchetto, R. (2018). Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion’s venom. Biomembranes, 1860(11), 2155-2165. https://doi.org/10.1016/j.bbamem.2018.08.012

Cruz, C. Z. P., Mendonça, R. J., Guimaraes, L. H. S., Santos Ramos, M. A., Garrido, S. S., Paula, A. V., Monti, R., & Massolini, G. (2020). Assessment of the bioactive potential of cheese whey protein hydrolysates using immobilized alcalase. Food and Bioprocess Technology, 13(12), 2120-2130. https://doi.org/10.1007/s11947-020-02552-4

Cruz, K. R., Ianzer, D., Turones, L. C., Reis, L. L., Camargo-Silva, G., Mendonça, M. M., Silva, E. S., Pedrino, G. R., Castro, C. H., Costa, E. E., & Xavier, C. H. (2019). Behavioral effects evocked by the beta globin-derived nanopeptide LVV_H6. Peptides, 115, 59-68. https://doi.org/10.1016/j.peptides.2019.03.002

Cruz, K. R., Turones, L. C., Camargo-Silva, G., Gomes, K. P., Mendonça, M. M., Galdino, P., Rodrigues-Silva, C., Santos, R. A. S., Costa, E. A., Ghedini, P. C., Ianzer, D., & Xavier, C. H. (2017). The haemoglobin derived peptide LVV- hemorphin-7 evokes behavioural effects mediated by oxytocin receptors. Neuropeptides, 66, 59-68. http://doi.org/10.1016/j.npep.2017.09.002

Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favourable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3, 100047. https://doi.org/10.1016/j.fochms.2021.100047

Da Silva, S. L., Almeida, J. R., Resende, L. M., Martins, W., Henriques, F. A. F. A., Baldasso, P. A., Soares, A. M., Taranto, A. G., Resende, R. R., Marangoni, S., & Dias-Junior, C. A. (2011). Isolation and characterization of a natriuretic peptide from Crotalus oreganus abyssus (grand canyon rattlesnake) and its effects on systemic blood pressure and nitrite levels. International Journal of Peptide Research and Therapeutics, 17, 165-173. https://doi.org/10.1007/s10989-011-9254-z

Daroit, D. J., Corrêa, A. P. F., Canales, M. M., Coelho, J. G., Hidalgo, M. E., Tichota, D. M., Risso, P. H., & Brandelli, A. (2012). Physicochemical properties and biological activities of ovine caseinate hydrolysates. Dairy Science and Technology, 92, 335-351. https://doi.org/10.1007/s13594-012-0068-3

De Oliveira, T. V., Guimarães, A. P., Bressan, G. C., Maia, E. R., Coimbra, J. S. R., Polêto, M. D., & De Oliveira, E. B. (2021). Structural and molecular bases of angiotensin-converting enzyme inhibition by bovine casein-derived peptides: an in silico molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 39(4), 1386-1403. https://doi.org/10.1080/07391102.2020.1730243

De Oliveira, T. V., Polêto, M. D., De Oliveira, M. R., Silva, T. J., Barros, E., Guimarães, V. M., Baracat-Pereira, M. C., Eller, M. R., Coimbra, J. S. R., & De Oliveira, E. B. (2020). Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies. Food Biophysics, 15, 162-172. https://doi.org/10.1007/s11483-019-09616-9

Delgado-García, M., Flores-Gallegos, A. C., Kirchmayr, M., Rodríguez, J. A., Mateos-Díaz, J. C., Aguilar, C. N., Muller, M., & Camacho-Ruíz, R. M. (2019). Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electronic Journal of Biotechnology, 39, 52-60. https://doi.org/10.1016/j.ejbt.2019.03.001

Dematei, A., Nunes, J. B., Moreira, D. C., Jesus, J. A., Laurenti, M. D., Mengarda, A. C. A., Vieira, m. S., Amaral, C. P., Domingues, M. M., Moraes, J., Passero, L. F. D., Brand, G., Bessa, L. J., Wimmer, R., Kuckelhaus, S. A. S., Tomás, A. M., Santos, N. C., Plácido, A., Eaton, P., & Leite, J. R. S. A. (2021). Mechanistic insights into the leishmanicidal and bactericidal activities of batroxicidin, a cathelicidin-related peptide from a south american viper (Bothrops atrox). Journal of Natural Products, 84(6), 1787-1798. https://doi.org/10.1021/acs.jnatprod.1c00153

Dornelles, L. P., Souza, M. F. D., Silva, P. M., Procópio, T. F., Filho, R. S. R., Lima, T. A., Oliveira, A. P. S., Zingali, R. B., Paiva, P. M. G., Pontual, E. V., & Napoleão, T. H. (2018). Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides. Food Chemistry, 245, 1169-1175. https://doi.org/10.1016/j.foodchem.2017.11.044

Duarte Neto, J. M. W., Maciel, J. C., Campos, J. F., Carvalho Junior, L. B., Marques, D. A. V., Lima, C. A., & Porto, A. L. F. (2017). Optimization of Penicillium aurantiogriseum protease immobilization on magnetic nanoparticles for antioxidant peptides’ obtainment. Preparative Biochemistry and Biotechnology, 47(7), 644-654. https://doi.org/10.1080/10826068.2017.1292286

Fagundes, P. C., Ceotto, H., Potter, A., Brito, M. A. V. P., Brede, D., Nes, I. F., & Bastos, M. C. F. (2011). Hyicin 3682, a bioactive peptide produced by Staphylococcus hyicus 3862 with potential applications for food preservation. Research in Microbiology, 162(10), 1052-1059. https://doi.org/10.1016/j.resmic.2011.10.002

Ferreira, S. Z., Carneiro, H. C., Lara, H. A., Alves, R. B., Resende, J. M., Oliveiram H. M., Silva, L. M., Santos, D. A., & Freitas, R. P. (2015). Synthesis of a new peptide−coumarin conjugate: a potential agent against Cryptococcosis. ACS Medicinal Chemistry Letters, 6(3), 271-275. https://doi.org/10.1021/ml500393q

Fialho, T. L., Carrijo, L. C., Júnior, M. J. M., Baract-Pereira, M. C., Piccoli, R. H., & Abreu, L. R. (2018). Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Research International, 107, 406-413. https://doi.org/10.1016/j.foodres.2018.02.009

Figueiredo, C. R., Matsuo, A. L., Azevedo, R. A., Massaoka, M. H., Girola, N., Polonelli, L., & Travassos, L. R. (2015). A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo. Scientific Reports, 5, e14310. https://doi.org/10.1038/srep14310

Fontenele, M. A., Bastos, M. S. R., Santos, K. M. O., Bemquerer, M. P., & Egito, A. S. (2017). Peptide profile of coalho cheese: a contribution for protected designation of origin (PDO). Food Chemistry, 219, 382-390. https://doi.org/10.1016/j.foodchem.2016.09.171

Fontoura, R., Daroit, D. J., Corrêa, A. P. F., Moresco, K. S., Santi, L., Beys-da-Silva, W. O., Yates, J. R., Moreira, J. C. F., & Brandelli, A. (2019). Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnology, 49, 71-76. https://doi.org/10.1016/j.nbt.2018.09.003

Freitas, M. A. G., Amaral, N. O., Álvares, A. C. M., Oliveira, S. A., Mehdad, A., Honda, D. E., Bessa, A. S. M., Ramada, M. H. S., Naves, L. M., Pontes, C. N. R., Castro, C. H., Pedrino, G. R., & de Freitas, S. M. (2020). Blood pressure-lowering effects of a Bowman-Birk inhibitor and its derived peptides in normotensive and hypertensive rats. Scientific Reports, 10, 11680. https://doi.org/10.1038/s41598-020-66624-3

Fucase, T. M., Sciani, J. M., Cavalcante, I., Viala, V. L., Chagas, B. B., Pimenta, D. C., & Spencer, P. J. (2017). Isolation and biochemical characterization of bradykinin-potentiating peptides from Bitis gabonica rhinoceros. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23, 33. https://doi.org/10.1186/s40409-017-0124-9

Galli, B. D., Baptista, D. P., Cavalheiro, F. G., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2019). Peptide profile of Camembert-type chesse: effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. Food Research International, 123, 393-402. https://doi.org/10.1016/j.foodres.2019.05.009

Games, P. D., Silva, E. Q. G., Barbosa, M. O., Almeida-Souza, H. O., Fontes, P. P., Magalhães-Jr., M. J., Pereira, O. R. G., Prates, M. V., Franco, G. R., Faria-Campos, A., Campos, S. V. A., & Baracat-Pereira, M. C. (2016). Computer aided identification of a heveinlike antimicrobial peptide of bell pepper leaves for biotechnological use. BMC Genomics, 17(12), 999. https://doi.org/10.1186/s12864-016-3332-8

Gomes, M. J. C., Lima, S. L. S., Alves, N. E. G., Assis, A., Moreira, M. E. C., Toledo, R. C. L., Rosa, C. O. B., Teixeira. O. R., Bassinello, P. Z., Mejía, E. G., & Martino, H. S. D. (2020). Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, Metabolism & Cardiovascular Diseases, 30(1), 141-150. https://doi.org/10.1016/j.numecd.2019.07.020

Grancieri, M., Martino, H. S. D., & Mejia, E. G. (2019). Chia (Salvia hispanica L.) seed total protein and protein fractions digests reduce biomarkers of inflammation and atherosclerosis in macrophages in vitro. Molecular Nutrition and Food Research, 63(19), 1900021. https://doi.org/10.1002/mnfr.201900021

Graziani, D., Ribeiro, J. V. V., Cruz, V. S., Gomes, R. M., Araújo, E. G., Santos Júnior, A. C. M., Tomaz, H. C. M., Castro, C. H., Fontes, W., Batista, K. A., Fernandes, K. F., & Xavier, C. H. (2021). Oxidonitrergic and antioxidant effects of a low molecular weight peptide fraction from hardened bean (Phaseolus vulgaris) on endothelium. Brazilian Journal of Medical and Biological Research, 54(6), e10423. https://doi.org/10.1590/1414-431x202010423

Hamin Neto, Y. A. A. H., Rosa, J. C., & Cabral, H. (2019). Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Preparative Biochemistry and Biotechnology, 49(7), 639-648. https://doi.org/10.1080/10826068.2019.1566147

Helene, A. F., & Ribeiro, P. L. (2011). Brazilian scientific production, financial support, established investigators and doctoral graduates. Scientometrics, 89(2), 677-686. https://doi.org/10.1007/s11192-011-0470-2

Henaux, L., Pereira, K. D., Thibodeau, J., Pilon, G., Gill, Tom., Marette, A., & Bazinet, L. (2021). Glucoregulatory and anti-inflammatory activities of peptide fractions separated by electrodialysis with ultrafiltration membranes from salmon protein hydrolysate and identification of four novel glucoregulatory peptides. Membranes, 11(7), 528. https://doi.org/10.3390/membranes11070528

Hexsel, D., Zague, V., Schunck, M., Siega, C., Camozzato, F. O., & Oesser, S. (2017). Oral supplementation with specific bioactive collagen peptides improves nail growth and reduces symptoms of brittle nails. Journal of Cosmetic Dermatology, 16(4), 520-526. https://doi.org/10.1111/jocd.12393

Jia, F., Zhang, Y., Wang, J., Peng, J., Zhao, P., Zhang, L., Yao, H., Ni, J., & Wang, K. (2019). The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides, 112, 56-66. https://doi.org/10.1016/j.peptides.2018.11.006

Khedri, S., Sadeghi, E., Rouhi, M., Delshadian, Z., Mortazavian, A. M., Guimarães, J. T., Fallah, M., & Mohammadi, R. (2021). Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT – Food Science and Technology, 138, 110649. https://doi.org/10.1016/j.lwt.2020.110649

Kobbi, S., Nedjar, N., Chihib, N., Balti, R., Chevalier, M., Silvain, A., Chaabouni, S., Dhulster, P., & Bougatef, A. (2018). Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microbial Pathogenesis, 115, 41-49. https://doi.org/10.1016/j.micpath.2017.12.009

Kuniyoshi, A. K., Kodama, R. T., Moraes, L. H. F., Duzzi, B., Iwai, L. K., Lima, I. F., Cajado-Carvalho, D., & Portaro, F. V. (2017). In vitro cleavage of bioactive peptides by peptidases from Bothrops jararaca venom and its neutralization by bothropic antivenom produced by Butantan Institute: Major contribution of serine peptidases. Toxicon, 137, 114-119. https://doi.org/10.1016/j.toxicon.2017.07.020

Landim, A. P. M., Matsubara, N. K., Silva-Santos, J. E., Mellinger-Silva, C., & Rosenthal. A. (2021). Application of preliminary high-pressure processing for improving bioactive characteristics and reducing antigenicity of whey protein hydrolysates. Food Science and Technology International, 28(6), 489-501. https://doi.org/10.1177/10820132211022106

Latorres, J. M., Aquino, S., da Rocha, M., Wasielesky, W., Martins, V. G., & Prentice, C. (2021). Nanoencapsulation of white shrimp peptides in liposomes: Characterization, stability, and influence on bioactive properties. Journal of Food Processing and Preservation, 45(7), e15591. https://doi.org/10.1111/jfpp.15591

Latorres, J. M., Rios, D. G., Saggiomo, G., Wasielesky, W., & Prentice-Hernandez, C. (2018). Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). Journal of Food Science and Technology, 55, 721-729. https://doi.org/10.1007/s13197-017-2983-z

Liao, W., Jahandideh, F., Fan, H., Son, M., & Wu, J. (2018). Egg protein-derived bioactive peptides: preparation, efficacy, and absorption. Advances in Food and Nutrition Research, 85, 1-58. https://doi.org/10.1016/bs.afnr.2018.02.001

Lima, C. A., Campos, J. F., Filho, J. L. L., Converti, A., Cunha, M. G. C., & Porto, A. L. (2015). Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology, 52(7), 4459-4466. https://doi.org/10.1007/s13197-014-1463-y

Lima, H. V. D., Cavalcante, C. S. P., & Rádis-Baptista, G. (2020). Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon, 187, 19-28. https://doi.org/10.1016/j.toxicon.2020.08.015

Lima, M. S. F., Silva, R. A., Silva, M. F., Silva, P. A. B., Costa, R. M. P. B., Teixeira, J. A. C., Porto, A. L. F., & Cavalcanti, M. T. H. (2018). Brazilian kefir-fermented Sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics and Antimicrobial Proteins, 10, 446-455. https://doi.org/10.1007/s12602-017-9365-8

Lima, S. L. S., Gomes, M. J. C., Silva, B. P., Alves, N. E. G., Toledo, R. C. L., Theodoro, J. M. V., Moreira, M. E. C., Bento, J. A. C., Bassinello, P. Z., Matta, S. L. P., Mejía, E. G., & Martino, H. S. D. (2019). Whole flour and protein hydrolysate from common beans reduce the inflammation in BALB/c mice fed with high fat high cholesterol diet. Food Research International, 122, 330-339. https://doi.org/10.1016/j.foodres.2019.04.013

Lin, K., Zhang, L., Han, X., Xin, L., Meng, Z., Gong, P, & Cheng, D. (2018). Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry, 254, 340-347. https://doi.org/10.1016/j.foodchem.2018.02.051

Liu, L., Li, S., Zheng, J., Bu, T., He, G., & Wu, J. (2020). Safety considerations on food protein-derived bioactive peptides. Trends in Food Science and Technology, 96, 199-207. https://doi.org/10.1016/j.tifs.2019.12.022

Luz, C., Saladino, F., Luciano, F. B., Mañes, J., & Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT – Food Science and Technology, 81, 128-135. https://doi.org/10.1016/j.lwt.2017.03.053

Machado, A., Fázio, M. A., Miranda, A., Daffre, S., & Machini, T. (2012). Synthesis and properties of cyclic. Journal of Peptide Science, 18(9), 588-598. https://doi.org/10.1002/psc.2439

Machado, R. J. A., Estrela, A. B., Nascimento, A. K. L., Melo, M. M. A., Torres-Rêgo, M., Lima, E. O., Rocha, H. A. O., Carvalho, E., Silva-Junior, A. A., & Fernandes-Pedrosa, M. F. (2016). Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon, 119, 362-370. https://doi.org/10.1016/j.toxicon.2016.06.002

Magalhães, M. T. Q., Barbosa, E. A., Prates, M. V., Verly, R. M., Munhoz, V. H. O., Araújo, I. E., & Bloch Jr., C. (2013). Conformational and Functional Effects Induced by Dand L-Amino Acid Epimerization on a Single Gene Encoded Peptide from the Skin Secretion of Hypsiboas punctatus. Plos One, 8(4), e59255. https://doi.org/10.1371/journal.pone.0059255

Mandal, S. M., Bharti, R., Porto, W. F., Gauri, S. S., Mandal, M. M., Franco, O. L., & Ghosh, A. K. (2014). Identification of multifunctional peptides from human milk. Peptides, 56, 84-93. https://doi.org/10.1016/j.peptides.2014.03.017

Mariano, D. O., Sciani, J. M., Antoniazzi, M. M., Jared, C., & Conceição, K. (2021). Quantity – but not diversity – of secreted peptides and proteins increases with age in the tree frog Pithecopus nordestinus. Journal of Venomous Animals and Toxins including Tropical Diseases, 27, e20200105. https://doi.org/10.1590/1678-9199-JVATITD-2020-0105

Marques, M. R., Fontanari, G. G., Pimenta, D. C., Soares-Freitas, R. M., & Arêas, J. A.G. (2015). Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Research International, 77(Part 1), 43-48. https://doi.org/10.1016/j.foodres.2015.04.020

Marson, G. V., Castro, R. J. S., Machado, M. T. C., Zandonadi, F. S., Barros, H. D. F. Q., Maróstica Júnior, M. R., Sussulini, A., & Hubinger, M. D. (2020). Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochemistry, 91, 34-45. https://doi.org/10.1016/j.procbio.2019.11.030

Martins, D. B., Pacca, C. C., Silva, A. M. B., Souza, B. M., Almeida, M. T. G., Palma, M. S., Arcisio-Miranda, M., & Cabrera, M. P. S. (2020). Comparing activity, toxicity and model membrane interactions of Jelleine‑I and Trp/Arg analogs: analysis of peptide aggregation. Amino Acids, 52, 725-741. https://doi.org/10.1007/s00726-020-02847-y

Martins, L. A., Malossi, C. D., Galletti, M., Ribeiro, J. M., Fujita, A., Esteves, E., Costa, F. B., Labruna, M. B., Daffre, S., & Fogaça, A. C. (2019). The transcriptome of the salivary glands of Amblyomma aureolatum reveals the antimicrobial peptide microplusin as an important factor for the tick protection against rickettsia rickettsii infection. Frontiers in Physiology, 10, e529. https://doi.org/10.3389/fphys.2019.00529

Martins-Santos, M. E. S., Resende, R. R., Pinto, F. C. H., Soares, A. M., Marangoni, S., Oliveira, E., Alberício, F., & Silva, S. L. (2011). Effect of a Pool of Peptides Isolated from Crotalus durissus terrificus (South American Rattlesnake) Venom on Glucose Levels of Mice Fed on a High-Fat Diet. International Journal of Peptides Research and Therapeutics, 17, 225-230. https://doi.org/10.1007/s10989-011-9261-0

Massaoka, M. H., Matsuo, A. L., Figueiredo, C. R., Girola, N., Farias, C. F., Pasqualoto, K., & Travassos, L. R. (2014). A subtraction tolerization method of immunization allowed for Wilms' tumor protein-1 (WT1) identification in melanoma and discovery of an antitumor peptide sequence. Journal of Immunological Methods, 414, 11-19. https://doi.org/10.1016/j.jim.2014.08.003

Matos, F. M., Novelli, P. K., & Castro, R. J. S. (2021). Enzymatic hydrolysis of black cricket (Gryllus assimilis) proteins positively affects their antioxidant properties. Journal of Food Science, 86(2), 571-578. https://doi.org/10.1111/1750-3841.15576

Matsuo, A. L., Juliano, M. A., Figueiredo, C. R., Batista, W. L., Tanaka, A. S., & Travassos, L. R. (2011). A new phage-display tumor-homing peptide fused to antiangiogenic peptide generates a novel bioactive molecule with antimelanoma activity. Angiogenesis, Metastasis, and Cellular Microenvironment, 9(11), 1471-1478. https://doi.org/10.1158/1541-7786.MCR-10-0501

Meira, S. M. M., Daroit, D. J., Helfer, V. E., Corrêa, A. P. F., Segalin, J., Carro, S., & Brandelli, A. (2012). Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Research International, 48(1), 322-329. https://doi.org/10.1016/j.foodres.2012.05.009

Mello, L. R., Aguiar, R. B., Yamada, R. Y., Moraes, J. Z., Hamley, I. W., Alves, W. A., Reza, M., Ruokolainem, J., & Silva, E. R. (2020). Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. Journal of Materials Chemistry B, 8(12), 2495-2507. https://doi.org/10.1039/c9tb02219h

Mello, M. B., Malheiros, P. S., Brandelli, A., Silveira, N. P., Jantzen, M. M., & Motta, A. S. (2015). Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics and Antimicrobial Proteins, 5, 43-50. https://doi.org/10.1007/s12602-013-9125-3

Mendes, B., Almeida, J. R., Vale, N., Gomes, P., Gadelha, F. R., Da Silva, S. L., & Miguel, D. C. (2019). Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agentes. Comparative Biochemistry and Physiology, Part C, 226, e108612. https://doi.org/10.1016/j.cbpc.2019.108612

Mezzomo, T. R., Martins, C. A. F., Marcondes, D. B. S., Mischiatti, K. L., & Weffort-Santos, A. M. (2021). Assessment of the Functional Activities of Casein Phosphopeptides on Circulating Blood Leukocytes. International Journal of Peptide Research and Therapeutics, 27, 1265-1280. https://doi.org/10.1007/s10989-021-10166-3

Michelon, W., Silva, M. L. B., Matthiensen, A., Andrade, C. J., Andrade, L. M., & Soares, H. M. (2021). Amino acids, fatty acids, and peptides in microalgae biomass harvested from phycoremediation of swine wastewaters. Biomass Conversion and Biorefinery, 12, 869-880. https://doi.org/10.1007/s13399-020-01263-2

Migliolo, L., Felício, M. R., Cardoso, M. H., Silva, O. N., Xavier, M. E., Nolasco, D. O., Oliveira, A. S., Roca-Subira, I., Estape, J. V., Teixeira, L. D., Freitas, S. M., Otero-Gonzalez, A. J. O., Gonçalves, S., Santos, N. C., & Franco, O. L. (2016). Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2. Biochimica et Biophysica Acta, 1858(7 Part A), 1488-1498. https://doi.org/10.1016/j.bbamem.2016.04.003

Miltenburg, T. Z., Silva, M. U., Bosch, G., & Vasconcellos, R. S. (2021). Effects of enzymatically hydrolysed poultry byproduct meal in extruded diets on serum angiotensin-converting enzyme activity and aldosterone in cats. Archives of Animal Nutrition, 75(1), 64-77. https://doi.org/10.1080/1745039X.2020.1849899

Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. https://doi.org/10.1016/j.sjbs.2015.06.005

Mongui, A., Pérez-Lianos, F. J., Yamamoto, M. M., Lozano, M., Zambrano, M. M., Portillo, P. D., Fernández-Becerra, C., Restrepo, S., Portillo H. A. D., & Junca, H. (2015). Development of a genetic tool for functional screening of anti-malarial bioactive extracts in metagenomic libraries. Malaria Journal, 14, 233. https://doi.org/10.1186/s12936-015-0748-6

Montalvo, G. E. B., Thomz-Soccol, V., Vandenberghe, L. P. S., Carvalho, J. C., Faulds, C. B., Bertrand, E., Prado, M. R. M., Bonatto, S. J. R., & Soccol, C. R. (2019). Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresource Technology, 273, 103-113. https://doi.org/10.1016/j.biortech.2018.10.081

Monte, E. R. C., Rossato, C., Llanos, R. P., Russo, L. C., Castro, L. M., Gozzo, E. S., Araujo, C. B., Peron, J. P. S., Sant’Anna, O. A., Ferro, E. S., & Riolli, V. (2017). Interferon-gamma activity is potentiated by an intracellular peptide derived from the human 19S ATPase regulatory subunit 4 of the proteasome. Journal of Proteomics, 151, 74-82. https://doi.org/10.1016/j.jprot.2016.08.003

Moura, C. S., Lollo, P. C. B., Morato, P. N., Risso, E. M., & Amaya-Farfan, J. (2016). Functional effects of milk bioactive peptides on skeletal muscle of rats. Food Research International, 84, 18-25. https://doi.org/10.1016/j.foodres.2016.03.001

Moura, C. S., Lollo, P. C. B., Morato, P. N., Risso, E. M., & Amaya-Farfan, J. (2017). Bioactivity of food peptides: biological response of rats to bovine milk whey peptides following acute exercise. Food & Nutrition Research, 61(1), e1290740. https://doi.org/10.1080/16546628.2017.1290740

Naman, C. B., Rattan, R., Nikoulina, S. E., Lee, J., Miller, B. W., Moss, N. A., Armstrong, L., Boudreau, P. D., Debonsi, H. M., Valeriote, F. A., Dorrestein, P. C., & Gerwick, W. H. (2017). Integrating molecular networking and biological assays to target the isolation of a cytotoxic cyclic octapeptide, samoamide a, from an american samoan marine cyanobacterium. Journal of Natural Products, 80(3), 625-633. https://doi.org/10.1021/acs.jnatprod.6b00907

Nascimento, C. F., Siqueira, A. S., Pinheiro, J. J. V., Freitas, V. M., & Jaeger, R. G. (2011). Laminin-111 derived peptides AG73 and C16 regulate invadopodia activity of a human adenoid cystic carcinoma cell line. Experimental Cell Research, 317(18), 2562-2575. https://doi.org/10.1016/j.yexcr.2011.08.022

Nascimento, E. S., Anaya, K., Oliveira, J. M. C., Lacerda, J. T. J. G., Miller, M. E., Dias, M., Mendes, M. A., Pallone, J. A. L., Arns, C. W., Juliano, M. A., Gadelha, T. S., Pacheco, M. T. B., & Gadelha, C. A. A. (2021a). Identification of bioactive peptides released from in vitro gastrointestinal digestion of yam proteins (Dioscorea cayennensis). Food Research International, 143, 110286. https://doi.org/10.1016/j.foodres.2021.110286

Nascimento, T. C. E. S., Molino, J. V. D., Donado, P. R. S., Montalvo, G. S. A., Santos, W. L., Gomes, J. E. G., Santos, J. H. P. M., Silva, R., Sette, L. D., Junior. A. P., & Moreira, K. A. (2021b). Antarctic fungus proteases generate bioactive peptides from caseinate. Food Research International, 139, 109944. https://doi.org/10.1016/j.foodres.2020.109944

Ohara, A., Cason, V. G., Nishide, T. G., Matos, F. M., & Castro, R. J. S. (2020). Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation, 39(2), 100-108. https://doi.org/10.1080/10242422.2020.1789114

Oliveira, C. F. B., Alves, D. P., Emerich, B. L., Figueiredo, S. G., Cordeiro, M. N., Borges, M. H., Richardson, M., Pimenta, A. M. C., Duarte, I. D. G., & Lima, M. E. (2019a). Antinociceptive effect of PnTx4(5-5), a peptide from Phoneutria nigriventer spider venom, in rat models and the involvement of glutamatergic system. Journal of Venomous Animals and Toxins including Tropical Deseases, 25, e20190022. https://doi.org/10.1590/1678-9199-JVATITD-2019-0022

Oliveira, D., Bernardi, D., Drummond, F., Dieterich, F., Boscolo, W., Leivas, C., Kiatkoski, E., & Waszczynskyj, N. (2017). Potential use of tuna (Thunnus albacares) by-product: Production of antioxidant peptides and recovery of unsaturated fatty acids from tuna head. International Journal of Food Engineering, 13(7), 20150365. https://doi.org/10.1515/ijfe-2015-0365

Oliveira, G. V., Volino-Souza, M., Cordeiro, E. M., Conte-Junior, C. A., & Alvares, T. S. (2019b). Effects of fish protein hydrolysate ingestion on endothelial function compared to whey protein hydrolysate in humans. International Journal of Food Sciences and Nutrition, 71(2), 242-248. https://doi.org/10.1080/09637486.2019.1635090

Oliveira, J. J. (2016). Ciência, tecnologia e inovação no Brasil: Poder, política e burocracia na arena decisória. Revista de Sociologia e Política, 24(59), 129-147. https://doi.org/10.1590/1678-987316245907

Oliveira, T. J., Oliveira, U. C., & Silva Junior, P. I. (2019c). Serrulin: a glycine-rich bioactive peptide from hemolymph of the yellow Tityus serulatus Scorpion. Toxicon, 11(9), 517. https://doi.org/10.3390/toxins11090517

Oliveira Filho, J. G., Rodrigues, J. M., Valadares, A. C. F., Almeida, A. B., Valencia-Mejia, E., Fernandes, K. F., Lemes, A. C., Alves, C. C. F., Sousa, H. A. F., Silva, E. R., Egea, M. B., & Dyszy, F. H. (2021). Bioactive properties of protein hydrolysate of cottonseed byproduct: antioxidant, antimicrobial, and angiotensin‑converting enzyme (ace) inhibitory activities. Wast and Biomass Valorization, 12, 1395-1404. https://doi.org/10.1007/s12649-020-01066-6

Osman, A., Enan, G., Al-Mohammadi, A. R., Abdel-Shafi, S., Abdel-Hameid, S., Sitohy, M. Z., & El-Gazzar, N. (2021). Antibacterial peptides produced by alcalase from cowpea seed proteins. Antibiotics, 10(7), 870. https://doi.org/10.3390/antibiotics10070870

Parra, M. R., Coutinho, R. X., & Pessano, E. F. C. (2019). Um breve olhar sobre a cienciometria: origem, evolução, tendências e sua contribuição para o ensino de ciências. Revista Contexto & Educação, 34(107), 126-141. https://doi.org/10.21527/2179-1309.2019.107.126-141

Pazinatto, C., Malta, L. G., Pastore, G. M., & Maria Netto, F. (2013). Antioxidant capacity of amaranth products: Effects of thermal and enzymatic treatments. Food Science and Technology, 33(3), 485-493. https://doi.org/10.1590/S0101-20612013005000076

Pereira, A. M., Lisboa, C. R., Santos, T. D., & Costa, J. A. V. (2019). Bioactive stability of microalgal protein hydrolysates under food processing and storage conditions. Journal of Food Science and Technology, 56, 4543-4551. https://doi.org/10.1007/s13197-019-03915-2

Pinto, M. F. S., Silva, O. N., Viana, J. C., Porto, W. F., Migliolo, L., Cunha, N. B., Gomes Jr., N., Fensterseifer, J. C. M., Colgrave, M. L., Craik, D, J., Dias, S. C., & Franco, O. L. (2016). Characterization of a bioactive acyclotide from Palicourea rigida. Journal of Natural Products, 79(11), 2767-2773. https://doi.org/10.1021/acs.jnatprod.6b00270

Piotrowicz, I. B. B., Garcés-Rimon, M., Moreno-Fernández, S., Aleixandre, A., Salas-Mellado, M., & Miguel-Castro, M. (2020). Antioxidant, angiotensin-converting enzyme inhibitory properties and blood-pressure-lowering effect of rice bran protein hydrolysates. Foods, 9(6), 812. https://doi.org/10.3390/foods9060812

Plácido, A., Bueno, J., Barbosa, E. A., Moreira, D. C., Dias, J. N., Cabral, W. F., Albuquerque, P., Bessa. L. J., Freitas, J., Kucklhaus, S. A. S., Lima, F. C. D. A., Batagin-Neto, A., Brand, G. D., Relvas, J. B., Leite, J. R. S. A., & Eaton, P. (2020). The antioxidante peptide salamandrin-I: First bioactive peptide identified from skin secretion of Salamandra Genus (Salamandra salamandra). Biomolecules, 10(4), 512. https://doi.org/10.3390/biom10040512

Proksch, E., Schunck, M., Zague, V., Segger, D., Degwert, J., & Oesser, S. (2014). Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacology and Physiology, 27(3), 113-119. https://doi.org/10.1159/000355523

Pucca, M. B., Cerni, F. A., Pinheiro-Junior, E. L., Zoccal, K. F., Bordon, K. D. C. F., Amorim, F. G., Peigneur, S., Vriens, K., Thevissen, K., Cammue, B. P. A., Júnior, R. B. M., Arruda, E., Faccioli, L. H., Tytgat, J., & Arantes, E. C. (2016). Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides, 82, 44-51. https://doi.org/10.1016/j.peptides.2016.05.008

Quadros, C. C., Lima, K. O., Bueno, C. H. L., Fogaça, F. H. S., Rocha, M., & Prentice, C. (2019). Evaluation of the antioxidant and antimicrobial activity of protein hydrolysates and peptide fractions derived from Colossoma macropomum and their effect on ground beef lipid oxidation. Journal of Aquatic Food Product Technology, 28(6), 677-688. https://doi.org/10.1080/10498850.2019.1628152

Rádis-Baptista, G., Dodou, H. V., Prieto-da-Silva, Á. R. B., Zaharenko, A. J., Kazuma, K., Nihei, K., Inagaki, H., Mori-Yasumoto, K., & Konno, K. (2020). Comprehensive analysis of peptides and low molecular weight components of the giant ant Dinoponera quadriceps venom. Biological Chemistry, 401(8), 945-954. https://doi.org/10.1515/hsz-2019-0397

Ramada, M. H. S., Brand, G. D., Abrão, F. Y., Oliveira, M., Filho, J. L. C., Galbieri, R., Gramacho, K. P., Prates, M. V., Bloch Jr., C. (2017). Encrypted antimicrobial peptides from plant proteins. Scientific Reports, 7, 13263. https://doi.org/10.1038/s41598-017-13685-6

Ribeiro, E., Rocha, T. de S., & Prudencio, S. H. (2021). Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chemistry, 348, 129061. https://doi.org/10.1016/j.foodchem.2021.129061

Ribeiro, N. M., Toniolo, E. F., Castro, L. M., Russo, L. C., Riolli, V., Ferro, E. S., & Dale, C. S. (2013). AGH is a new hemoglobin alpha-chain fragment with antinociceptive activity. Peptides, 48, 10-20. https://doi.org/10.1016/j.peptides.2013.07.011

Rocha, T. S., Hernandez, L. M. R., Mojica, L., Johnson, M. H., Chang, Y. K., & Mejía, E. G. (2015). Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International, 76(Part 1), 150-159. https://doi.org/10.1016/j.foodres.2015.04.041

Romani, V. P., Martins, V. G., & Goddard, J. M. (2020). Radical scavenging polyethylene films as antioxidant active packaging materials. Food Control, 109, 106946. https://doi.org/10.1016/j.foodcont.2019.106946

Rosa, F. T., Zulet, M. A., Marchini, J. S., & Martínez, J. A. (2012). Bioactive compounds with effects on inflammation markers in humans. International Journal of Food Science and Nutrition, 63(6), 749-765. https://doi.org/10.3109/09637486.2011.649250

Sanches, B. C. P., Rocha, C. A., Bedoya, J. G. M., Silva, P. B., Fusco-Almeida, A. M., Chorilli, M., Contiero, J., Crusca, E., & Marchetto, R. (2021). Rhamnolipid-based liposomes promising nano-carriers for enhancing the antibacterial activity of peptides derived from bacterial toxin-antitoxin systems. International Journal of Nanomedicine, 2021, 925-939. https://doi.org/10.2147/IJN.S283400

Santana, C. J. C., Magalhães. A. C. M., Santos Júnior, A. C. M., Ricart, C. A. O., Lima, B. D., Álvares, A. C. M., Freitas, S. M., Pires Júnior, O. R., Fontes, W., & Castro, M. S. (2020). Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics, 9(9), 625. https://doi.org/10.3390/antibiotics9090625

Santos, B. P. O., Alves, E. S. F., Ferreira, C. S., Ferreira-Silva, A., Góes-Neto, A., Verly, R. M., Lião, L. M., Oliveira, S. C., & Magalhães, M. T. Q. (2021). Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz inhibitor SmKI-1. Biochimica et Biophysica Acta - General Subjects, 1865(11), 129989. https://doi.org/10.1016/j.bbagen.2021.129989

Santos, L. S. N., Sonoda, M. T., Gomes, R. A. S., & Abrahão Jr., O. (2012). Molecular modeling of bioactive neuropeptides: substrates of angiotensin I-converting enzyme. International Journal of Quantum Chemistry, 112(20), 3414-3420. https://doi.org/10.1002/qua.24276

Sanz, M., Andreote, A. P. D., Fiore, M. F., Dörr, F. A., & Pinto, E. (2015). Structural characterization of new peptide variants produced by cyanobacteria from the Brazilian Atlantic coastal forest using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Marine Drugs, 13(6), 3892-3919. https://doi.org/10.3390/md13063892

Sbroggio, M. F., Montilha, M. S., Figueiredo, V. R. G., Georgetti, S. R., & Kurozawa, L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36(2), 375-381. https://doi.org/10.1590/1678-457X.000216

Sharma, M., Sarin, A., Gupta, P., Sachdeva, S., & Desai, A. (2014). Journal impact factor: its use, significance and limitations. World Journal of Nuclear Medicine, 13(2), 146. https://doi.org/10.4103/1450-1147.139151

Shivanna, S. K., & Nataraj, B. H. (2020). Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience, 38, 100771. https://doi.org/10.1016/j.fbio.2020.100771

Sidone, O. J. G., Haddad, E. A., & Mena-Chalco, J. P. (2016). A ciência nas regiões brasileiras: evolução da produção e das redes de colaboração científica. Transinformação, 28(1), 15-31. https://doi.org/10.1590/2318-08892016002800002

Silva, A. C., Queiroz, A. E. S. F., Oliveira, J. T. C., Medeiros, E. V., Souza-Motta, C. M., & Moreira, K. A. (2019a). Antioxidant activities of chicken egg white hydrolysates obtained by new purified protease of Aspergillus avenaceus URM 6706. Brazilian Archives of Biology and Technology, 62, e19180062. https://doi.org/10.1590/1678-4324-2019180062

Silva, C. C. F., Menezes, M. C., Palomino, M., Oliveira, A. K., Iwai, L. K., Faria, M., & Portaro, F. V. (2017a). Peptides derived from plasma proteins released by bothropasin a metalloprotease present in the Bothrops jararaca venom. Toxicon, 137, 65-72. https://doi.org/10.1016/j.toxicon.2017.07.009

Silva, D. D., Lima, M. S. F., Silva, M. F., Silva, G. R., Campos, J. F., Albuquerque, W. W. C., Cavalcanti, M. T. H., & Porto, A. L. F. (2019b). Bioactive water-soluble peptides from fresh buffalo cheese may be used as product markers. LWT - Food Science and Technology, 108, 97-105. https://doi.org/10.1016/j.lwt.2019.03.035

Silva, J. C., Couto, L. L., Amaral, H. O., Gomes, F. M. M., Campos, G. A. A., Silva, L. P., & Mortari, M. R. (2020). Neuropolybin: a new antiseizure peptide obtained from wasp venom. Biochemical Pharmacology, 181, 114119. https://doi.org/10.1016/j.bcp.2020.114119

Silva, M. B. C., Souza, C. A. C., Philadelpho, B. O., Cunha, M. M. N., Batista, F. P. R., Silva, J. R., Druzian, J. I., Castilho, M. S., Cilli, E. M., & Ferreira, E. S. (2018). In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide. Food Chemistry, 259, 270-277. https://doi.org/10.1016/j.foodchem.2018.03.132

Silva, M. S., Ribeiro, S. F. F., Taveira, G. B., Rodrigues, R., Fernandes, K. V. S., Carvalho, A. O., Vasconcelos, I. M., Mello, E. O., & Gomes, V. M. (2017b). Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells. Journal of the Science of Food and Agriculture, 97(11), 3790-3801. https://doi.org/10.1002/jsfa.8243

Silva, P. C, Toledo, T., Brião, V., Bertolin, T. E., & Costa, J. A. V. (2021). Development of extruded snacks enriched by bioactive peptides from microalga Spirulina sp. LEB 18. Food Bioscience, 42, 101031. https://doi.org/10.1016/j.fbio.2021.101031

Silva, R. A., Lima, M. S. F., Viana, J. B. M., Bezerra, V. S., Pimentel, M. C. B., Porto, A. L. F., Cavalcanti, M. T. H., & Lima Filho, J. L. (2012). Can artesanal “Coalho” cheese from Northeastern Brazil be used as a functional food? Food Chemistry, 135(3), 1533-1538. https://doi.org/10.1016/j.foodchem.2012.06.058

Silva, S. L., Almeida, J. R., Resende, L. M., Martins, W., Henriques, F. A. F. A., Baldasso, P. A., Soares, A. M., Taranto, A. G., Resende, R. R., Marangoni, S., & Dias-Junior, C. A. (2011). Isolation and characterization of a nutriuretic peptide fro Crotalus oregans abyssus (Grand Cabyon Rattlesnake) and its effects on systemic blood pressure and nitrite levels. International Journal of Peptide Research and Therapeutics, 17(3), 165-173. https://doi.org/10.1007/s10989-011-9254-z

Silva-Stenico, M. E., Silva, C. S. P., Lorenzi, A. S., Shishido, T. K., Etchegaray, A., Lira, S. P., Moraes, L. A. B., & Fiore, M. F. (2011). Non-ribosomal peptides produced by brazilian cyanobacterial isolates with antimicrobial activity. Microbial Research, 166(3), 161-175. https://doi.org/10.1016/j.micres.2010.04.002

Soares, R. A. M., Mendonça, S., Castro, L. I. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from Amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences, 16(2), 4150-4160. https://doi.org/10.3390/ijms16024150

Sousa, N. A., Oliveira, G. A. L., Oliveira, A. P., Lopes, A. L. F., Iles, B., Nogueira, K. M., Araújo, T. S. L., Souza, L. K. M., Araújo, A. R., Ramos-Jesus, J., Plácido, A., Amaral, C., Campelo, Y. D. M., Barbosa, E. A., Portugal, C. C., Socodato, R., Lobo, A., Relvas, J., Bemquerer, M., Eaton, P., Leite, J. R. S. A., & Medeiros, J. V. R. (2020). Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons. Scientific Reports, 10, 2696. https://doi.org/10.1038/s41598-020-59665-1

Souza, D. L., Zambalde, A. L., Mesquita, D. L., Souza, T. A., & Silva, N. L. C. (2020). The perspective of researchers on the challenges of research in Brazil. Educação e Pesquisa, 46, e221628. https://doi.org/10.1590/S1678-4634202046221628

Spíndola, F. D., Lima, J. P. R., & Fernandes, A. C. (2015). Interação Universidade-Empresa: o caso do setor sucroalcooleiro de Pernambuco. Economia e Sociedade, 24(1), 121-149. https://doi.org/10.1590/1982-3533.2015v24n1art5

Toldrá, F., & Mora, L. (2021). Proteins and bioactive peptides in high protein content foods. Foods, 10(6), 1186. https://doi.org/10.3390/foods10061186

Toldrá, F., Reig, M., Aristoy, M. C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. https://doi.org/10.1016/j.foodchem.2017.06.119

Torres, M. D. T., Andrade, G. P., Sato, R. H., Pedron, C. N., Manieri, T. M., Cerchiaro, G., Ribeiro, A. O., Fuente-Nunez. C. L., & Jr., V. X. O. (2018). Natural and redesigned wasp venom peptides with selective antitumoral activity. Beilstein Journal of Organic Chemistry, 14, 1693-1703. https://doi.org/10.3762/bjoc.14.144

Torres-Rêgo, M., Gláucia-Silva, F., Soares, K. S. R., Souza, L. B. F. C., Damasceno, I. Z., Santos-Silva, E., Lacerda, A. F., Chaves, G. M., Silva-Júnior, A. A., & Fernandes-Pedrosa, M. F. F. (2019). Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. Materials Science & Engineering C, 103, 109830. https://doi.org/10.1016/j.msec.2019.109830

Traoré, M., Mietton, F., Maubon, D., Peuchmar, M., Hilário, F. F., Freitas, R. P., Bougdour, A., Curt, A., Maynadier, M., Vial, H., Pelloux, H., Hakimi, M., & Wong, Y. (2013). Flexible synthesis and evaluation of diverse anti-apicomplexa cyclic peptides. Journal of Organic Chemistry, 78(8), 3655-3675. https://doi.org/10.1021/jo4001492

Tu, M., Cheng, S., Lu, W., & Du, M. (2018a). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105, 7-17. https://doi.org/10.1016/j.trac.2018.04.005

Tu, M., Liu, H., Zhang, R., Chen, H., Fan, F., Shi, P., Xu, X., Lu, W., & Du, M. (2018b). Bioactive hydrolysates from casein: generation, identification, and in silico toxicity and allergenicity prediction of peptides. Journal of the Science of Food and Agriculture, 98(9), 3416-3426. https://doi.org/10.1002/jsfa.8854

Vanzolini, K. L., Ainsworth, S., Bruyneel, B., Herzig, V., Seraus, M. G. L., Somsen, G. W., Casewell, N. R., Cass, Q. B., & Kool, J. (2018). Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon, 152, 1-8. https://doi.org/10.1016/j.toxicon.2018.06.080

Venancio, E. J., Portaro, F. C. V., Kuniyoshi, A. K., Carvalho, D. C., Pidde-Queiroz, G., & Tambourgi, D. V. (2013). Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon, 69, 180-190. https://doi.org/10.1016/j.toxicon.2013.02.012

Vernaza, M. G., Dia, V. P., Mejia, E. G., & Chang, Y. K. (2012). Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chemistry, 134(4), 2217-2225. https://doi.org/10.1016/j.foodchem.2012.04.037

Vogel, C., Paglia, E. B., Moroni, L. S., Demiate, I. M., Prestes, R. C., & Kempka, A. P. (2021). Swine plasma peptides obtained using pepsin: In silico and in vitro properties and biological activities. Biocatalysis and Biotransformation, 41(2), 108-122. https://doi.org/10.1080/10242422.2021.1981880

Wen, C., Zhang, J., Yao, H., Zhou, J., Duan, Y., Zhang, H., & Ma, H. (2019). Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrasonics Sonochemistry, 53, 83-98. https://doi.org/10.1016/j.ultsonch.2018.12.036

Yekta, M. M., Rezaei, M., Nouri, L., Azizi, M. H., Jabbari, M., Eş, I., & Khaneghah, A. M. (2020). Antimicrobial and antioxidant properties of burgers with quinoa peptide-loaded nanoliposomes. Journal of Food Safety, 40(2), e12753. https://doi.org/10.1111/jfs.12753

Yesmine, B. H., Antoine, B., Leocádia, N. G. S. O., Rogério, B. W., Ingrid, A., Nicolas, B., Thierry, M., Piot, J. M., Frédéric, S., & Stéphanie, B. J. (2017). Identification of ace inhibitory cryptides in Tilapia protein hydrolysate by UPLC–MS/MS coupled to database analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1052, 43-50. https://doi.org/10.1016/j.jchromb.2017.02.015

Zanutto-Elgui, M. R., Vieira, J. C. S., Prado, D, Z., Buzalaf, M. A R., Padilha, P. M., Oliveira, D. E., & Fleuri, L. F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry, 278, 823-831. https://doi.org/10.1016/j.foodchem.2018.11.119

Downloads

Published

2023-06-19

How to Cite

SILVA, E. F. T. da, BARBOSA, M. A. P., MARINHO, T. A. de F., LIMA, G. C., SANTOS, W. L. dos, ESPINDOLA, M. T. A., SOARES, L. B. F., GOMES, J. E. G., & MOREIRA, K. A. (2023). Ten years of research on bioactive peptides in Brazil: a scientometric analysis. Food Science and Technology, 43. https://doi.org/10.5327/fst.131022

Issue

Section

Original Articles