Influence of the addition of strawberry guava (Psidium cattleianum) pulp on the content of bioactive compounds in kombuchas with yerba mate (Ilex paraguariensis)
DOI:
https://doi.org/10.5327/fst.00063Keywords:
tea fermentation, functional beverage, antioxidant capacity, phenolic compoundsAbstract
Kombucha is a beverage obtained by fermenting tea with a symbiotic culture of bacteria and yeasts. It has been investigated to explore less-used raw materials added to kombucha to partially replace tea and flavor the drink. This influences the sensory characteristics and the concentration of bioactive compounds. In this context, this study aimed to evaluate the influence of adding strawberry guava pulp on the total phenolic compound (TPC) content and in vitro antioxidant capacity of kombuchas made with green tea and yerba mate. Thus, it was observed that the fermentative process resulted in increased TPC content in the formulations made with green tea (T1) and with green tea and yerba mate (1:1) (T3). Furthermore, these formulations flavored with strawberry guava pulp presented the highest TPC contents [184.39 and 150.78 mg gallic acid equivalent (GAE)/100 mL, respectively]. Furthermore, the formulation T1 showed a high antioxidant capacity for ABTS+ and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. On the contrary, the formulation T3 added with strawberry guava pulp showed the highest antioxidant capacity (5.24 µM TEAC/mL) by the ferric reductive antioxidant potential (FRAP) method. Thus, the strawberry guava pulp proved to be a promising alternative for the flavoring and diversification of kombuchas.
Downloads
References
Abuduaibifu, A., & Tamer, C. E. (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation, 43(9), e14077. https://doi.org/10.1111/JFPP.14077
Association of Official Analytical Chemists (AOAC). (2005). Official methods of analysis (18th ed.). AOAC.
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Freitas, A., Sousa, P., & Wurlitzer, N. (2022). Alternative raw materials in kombucha production. International Journal of Gastronomy and Food Science, 30, 100594. https://doi.org/10.1016/J.IJGFS.2022.100594
Gamboa-Gómez, C. I., González-Laredo, R. F., Gallegos-Infante, J. A., Pérez, M. M. L., Moreno-Jiménez, M. R., Flores-Rueda, A. G., & Rocha-Guzmán, N. E. (2016). Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium. Food Technology and Biotechnology, 54(3), 367-374. https://doi.org/10.17113/FTB.54.03.16.4622
Gerolis, L. G. L., Lameiras, F. S., Krambrock, K., & Neves, M. J. (2017). Effect of gamma radiation on antioxidant capacity of green tea, yerba mate, and chamomile tea as evaluated by different methods. Radiation Physics and Chemistry, 130, 177-185. https://doi.org/10.1016/J.RADPHYSCHEM.2016.08.017
Global Industry Analysts (2023). Kombucha. Global Industry Analysts. Retrieved from https://www.marketresearch.com/Global-Industry-Analysts-v1039/Kombucha-33799075/
Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants, 9(5), 447. https://doi.org/10.3390/ANTIOX9050447
Khaleil, M. M., Ellatif, S. A., Soliman, M. H., Elrazik, E. S. A., & Fadel, M. S. (2020). A bioprocess development study of polyphenol profile, antioxidant and antimicrobial activities of kombucha enriched with Psidium guajava L. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1204-1210. https://doi.org/10.15414/jmbfs.2020.9.6.1204-1210
Leonarski, E., Guimarães, A. C., Cesca, K., & Poletto, P. (2022). Production process and characteristics of kombucha fermented from alternative raw materials. Food Bioscience, 49, 101841. https://doi.org/10.1016/J.FBIO.2022.101841
Medina, A. L., Haas, L. I. R., Chaves, F. C., Salvador, M., Zambiazi, R. C., Da Silva, W. P., Nora, L., & Rombaldi, C. V. (2011). Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chemistry, 128(4), 916-922. https://doi.org/10.1016/J.FOODCHEM.2011.03.119
Pereira, E. dos S., Vinholes, J., Franzon, R. C., Dalmazo, G., Vizzotto, M., & Nora, L. (2018). Psidium cattleianum fruits: A review on its composition and bioactivity. Food Chemistry, 258, 95-103. https://doi.org/10.1016/J.FOODCHEM.2018.03.024
Pereira, E. dos S., Vinholes, J. R., Camargo, T. M., Nora, F. R., Crizel, R. L., Chaves, F., Nora, L., & Vizzotto, M. (2020). Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase. Food Bioscience, 37, 100665. https://doi.org/10.1016/J.FBIO.2020.100665
Rahmani, R., Beaufort, S., Villarreal-Soto, S. A., Taillandier, P., Bouajila, J., & Debouba, M. (2019). Kombucha fermentation of African mustard (Brassica tournefortii) leaves: Chemical composition and bioactivity. Food Bioscience, 30, 100414. https://doi.org/10.1016/J.FBIO.2019.100414
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891- 5849(98)00315-3
Rocha-Guzmán, N. E., González-Laredo, R. F., Moreno-Jiménez, M. R., Gallegos-Infante, J. A., Mancera-Rodríguez, J., & Rosales-Villarreal, M. C. (2023). Kombucha analogs from maqui juice: Consortium age and sugar concentration effects on anthocyanin stability and its relationship with antioxidant activity and digestive enzyme inhibition. Food Chemistry, 421, 136158. https://doi.org/10.1016/J.FOODCHEM.2023.136158
Santetti, G. S., Dacoreggio, M. V., Inácio, H. P., Biduski, B., Hoff, R. B., Fritzen Freire, C. B., Gutkoski, L. C., & Amboni, R. D. de M. C. (2021). The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? LWT, 146, 111442. https://doi.org/10.1016/J.LWT.2021.111442
Sharifudin, S. A., Ho, W. Y., Yeap, S. K., Abdullah, R., & Koh, S. P. (2021). Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. LWT, 151, 112060. https://doi.org/10.1016/J.LWT.2021.112060
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic- Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Tan, W. C., Muhialdin, B. J., & Meor Hussin, A. S. (2020). Influence of Storage Conditions on the Quality, Metabolites, and Biological Activity of Soursop (Annona muricata. L.) Kombucha. Frontiers inMicrobiology, 11, 603481. https://doi.org/10.3389/FMICB.2020.603481/BIBTEX
Yildiz, E., Guldas, M., & Gurbuz, O. (2020). Determination of in-vitro phenolics, antioxidant capacity and bio-accessibility of Kombucha tea produced from black carrot varieties grown in Turkey. Food Science and Technology, 41(1), 180-187. https://doi.org/10.1590/FST.00320
Yuliana, N., Nurainy, F., Sari, G. W., Sumardi, & Widiastuti, E. L. (2023). Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Applied Food Research, 3(1), 100297. https://doi.org/10.1016/J.AFRES.2023.100297
Zubaidah, E., Dewantari, F. J., Novitasari, F. R., Srianta, I., & Blanc, P. J. (2018). Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198-203. https://doi.org/10.1016/J.BCAB.2017.12.012