Rapid Detection of Tea Adulteration Using FT-NIR Spectroscopy Combined with t-SNE Analysis
DOI:
https://doi.org/10.5327/fst.00454Keywords:
infrared, nonlinear statistical method, fraud, medicinal plantsAbstract
Tea is one of the most popular non-alcoholic beverages internationally, and it is not uncommon to find commercial tea preparations mixed with leaves and parts of other plants to increase profit and production volume, which constitutes fraud. The aim of this study was to perform Fourier transform-near-infrared spectroscopic characterization of leaves and pieces (petioles and stems) of three types of medicinal plants (Chamomile, Ginseng, and Quebra-pedras) used in the preparation of teas. Cluster analysis methods were used to evaluate the ability of Fourier transform-near-infrared to identify plant types, with t-SNE presenting the best discriminatory power. The deconvolution of the spectra showed that 15 vibration bands allow a good characterization of the samples, all with R² greater than 0.99.
Downloads
References
Alkufeidy, R. M., Altuwijri, L. A., Aldosari, N. S., Alsakabi, N., & Dawoud, T. M. (2024). Antimicrobial and synergistic properties of green tea catechins against microbial pathogens. Journal of King Saud University - Science, 36(8), 103277. https://doi.org/10.1016/j.jksus.2024.103277
Amsaraj, R., & Mutturi, S. (2024). Classification and quantification of multiple adulterants simultaneously in black tea using spectral data coupled with chemometric analysis. Journal of Food Composition and Analysis, 125, 105715. https://doi.org/10.1016/j.jfca.2023.105715
Bhushan, V., Bharti, S. K., Krishnan, S., Kumar, A., & Kumar, A. (2024). Antidiabetic effectiveness of phyllanthus niruri bioactive compounds via targeting DPP-IV. Natural Product Research, 1–7. https://doi.org/10.1080/14786419.2024.2337108
Chen, X., Wang, D., Li, J., Xu, T., Lai, K., Ding, Q., Lin, H., Sun, L., & Lin, M. (2020). A spectroscopic approach to detect and quantify phosmet residues in oolong tea by surface-enhanced raman scattering and silver nanoparticle substrate. Food Chemistry, 312, 126016. https://doi.org/10.1016/j.foodchem.2019.126016
Fang, S., Huang, W., Yang, T., Pu, L., Ma, Y., Zhu, X., Pan, K., & Fang, W. (2024). Ancient tea plants black tea taste determinants and their changes over manufacturing processes. LWT, 193, 115750. https://doi.org/10.1016/j.lwt.2024.115750
Haseli, A., Pourahmad, R., Eshaghi, M. R., Rajaei, P., & Akbari-Adergani, B. (2023). Application of nanoencapsulated mofarrah (nepeta crispa) essential oil as a natural preservative in yogurt drink (doogh). LWT, 186, 115256. https://doi.org/10.1016/j.lwt.2023.115256
He, H.-F., Wei, K., Yin, J., & Ye, Y. (2021). Insight into Tea Flavonoids: Composition and Chemistry. Food Reviews International, 37(8), 812–823. https://doi.org/10.1080/87559129.2020.1721530
He, W., Zhou, J., Cheng, H., Wang, L., Wei, K., Wang, W., & Li, X. (2012). Validation of origins of tea samples using partial least squares analysis and euclidean distance method with near-infrared spectroscopy data. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 399–404. https://doi.org/10.1016/j.saa.2011.10.056
He, Y., Li, X., & Deng, X. (2007). Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model. Journal of Food Engineering, 79(4), 1238–1242. https://doi.org/10.1016/j.jfoodeng.2006.04.042
Jorge, M. H. A. & Vaz, A. P. A. (2007). Série plantas medicinais condimentares e aromáticas. Infoteca. Retrieved March 3, 2024, from https://www.infoteca.cnptia.embrapa.br/bitstream/doc/786727/1/FOL112.pdf
Johnson, J. B., Thani, P. R., Mani, J. S., Cozzolino, D., & Naiker, M. (2022). Mid-infrared spectroscopy for the rapid quantification of eucalyptus oil adulteration in australian tea tree oil (melaleuca alternifolia). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 283, 121766. https://doi.org/10.1016/j.saa.2022.121766
Johnson, J. B., Thani, P. R., & Naiker, M. (2023). Through-container detection of tea tree oil adulteration using near-infrared spectroscopy (NIRS). Chemical Papers, 77(4), 2009–2017. https://doi.org/10.1007/s11696-022-02603-4
Kong, L., Wu, C., Li, H., Yuan, M., & Sun, T. (2024). Discrimination of tea seed oil adulteration based on near-infrared spectroscopy and combined preprocessing method. Journal of Food Composition and Analysis, 134, 106560. https://doi.org/10.1016/j.jfca.2024.106560
Kostina, Y. V., Rusakova, O. Y., Mikhalitsyn, L. A., & Bondarenko, G. N. (2023). Use of raman spectroscopy in analysis of crude oils, petroleum products, oil-bearing rocks, and petrochemical process catalysts (a review). Petroleum Chemistry, 63(1), 1–30. https://doi.org/10.1134/S0965544123020123
Kumar, T., Rai, A. K., Dwivedi, A., Kumar, R., & Rai, A. K. (2023). Investigation and comparison of nutritional supplements (elements and compounds) in various tea leaves using spectroscopic techniques. Proceedings of the National Academy of Sciences India Section A: Physical Sciences, 93(2), 413–422. https://doi.org/10.1007/s40010-023-00815-1
Kunbhar, S., Talpur, F. N., Mahesar, S. A., Afridi, H. I., Fareed, G., Razzaque, N., & Nisa, M. (2025). Application of ATR-FTIR and chemometrics for rapid lard adulteration assessment in confectionery. Vibrational Spectroscopy, 136, 103762. https://doi.org/10.1016/j.vibspec.2024.103762
Li, J., & Chase, H. A. (2010). Applications of membrane techniques for purification of natural products. Biotechnology Letters, 32(5), 601–608. https://doi.org/10.1007/s10529-009-0199-7
Li, X., He, Y., Wu, C., & Sun, D.-W. (2007). Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR spectroscopy. Journal of Food Engineering, 82(3), 316–323. https://doi.org/10.1016/j.jfoodeng.2007.02.042
Li, X., Jin, J., Sun, C., Ye, D., & Liu, Y. (2019). Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy. Food Chemistry, 270, 236–242. https://doi.org/10.1016/j.foodchem.2018.07.039
Li, Y., Elliott, C. T., Petchkongkaew, A., & Wu, D. (2024). The classification, detection and ‘SMART’ control of the nine sins of tea fraud. Trends in Food Science and Technology, 149, 104565. https://doi.org/10.1016/j.tifs.2024.104565
Li, Y., Logan, N., Quinn, B., Hong, Y., Birse, N., Zhu, H., Haughey, S., Elliott, C. T., & Wu, D. (2024). Fingerprinting black tea: when spectroscopy meets machine learning a novel workflow for geographical origin identification. Food Chemistry, 438, 138029. https://doi.org/10.1016/j.foodchem.2023.138029
Li, Y., Yu, S., Yang, S., Ni, D., Jiang, X., Zhang, D., Zhou, J., Li, C., & Yu, Z. (2023). Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes. Food Chemistry: X, 18, 100731. https://doi.org/10.1016/j.fochx.2023.100731
Lin, S.-R., Fu, Y.-S., Tsai, M.-J., Cheng, H., & Weng, C.-F. (2017). Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. International Journal of Molecular Sciences, 18(7), 1412. https://doi.org/10.3390/ijms18071412
Lin, X., & Sun, D.-W. (2020). Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses. Trends in Food Science and Technology, 104, 163–176. https://doi.org/10.1016/j.tifs.2020.06.009
Liu, Y., Zhao, G., Li, X., Shen, Q., Wu, Q., Zhuang, J., Zhang, X., Xia, E., Zhang, Z., Qian, Y., Gao, L., & Xia, T. (2020). Comparative analysis of phenolic compound metabolism among tea plants in the section thea of the genus camellia. Food Research International, 135, 109276. https://doi.org/10.1016/j.foodres.2020.109276
Luo, Q., Luo, L., Zhao, J., Wang, Y., & Luo, H. (2024). Biological potential and mechanisms of tea’s bioactive compounds: an updated review. Journal of Advanced Research, 65, 345–363. https://doi.org/10.1016/j.jare.2023.12.004
Mendes, T., Rodrigues, B. V. M., Porto, B. L. S., Rocha, R. A., Oliveira, M. A. L., Castro, F. K., Anjos, V. C., & Bell, M. J. V. (2020). Raman Spectroscopy as a fast tool for whey quantification in raw milk. Vibrational Spectroscopy, 111, 103150. https://doi.org/10.1016/j.vibspec.2020.103150
Ocieczek, A., Pukszta, T., Żyłka, K., & Kirieieva, N. (2023). The influence of storage conditions on the stability of selected health-promoting properties of tea. LWT, 184, 115029. https://doi.org/10.1016/j.lwt.2023.115029
Okafor, N. R., Adegbamigbe, A. D., Olofin, O. O., Josiah, S. S., Ogundele, J. O., Olaleye, M. T., & Akinmoladun, A. C. (2024). Biochemical and pharmacological properties of a polyherbal antilipemic tea in chemically induced hyperlipidemia. Scientific African, 24, Article e02239. https://doi.org/10.1016/j.sciaf.2024.e02239
P E, S. K., Mishra, A., Mandal, S., Chawla, S., & Kalra, B. S. (2023). Hepatoprotective potential of phyllanthus niruri and andrographis paniculata in isoniazid-rifampicin induced hepatotoxicity in rats. Indian Journal of Tuberculosis. https://doi.org/10.1016/J.IJTB.2023.12.009
Qiao, Y.-F., Wang, R.-C., Wang, X.-Y., & Li, Y.-L. (2024). Research on the effect of processing methods on ginseng quality and key technologies for improvement. Chinese Journal of Analytical Chemistry, 52(7), 100413. https://doi.org/10.1016/j.cjac.2024.100413
Van Wyk, B.-E., & Gorelik, B. (2017). The history and ethnobotany of cape herbal teas. South African Journal of Botany, 110, 18–38. https://doi.org/10.1016/j.sajb.2016.11.011
Wolstenholme, R., Jickells, S., & Forbes, S. (2021). Analytical techniques in forensic science. Wiley.
Zhao, F., Wang, X., Liu, H., & Qian, J. (2024). In vitro and in vivo anti-inflammatory models demonstrate oligopeptides play a significant role in anti-inflammatory properties of white tea. Journal of Functional Foods, 112, 105983. https://doi.org/10.1016/j.jff.2023.105983