Uno Antioxidant capacity and antimicrobial activity of loquat (Eriobotrya japonica) extracts from Tenango del Valle, State of Mexico

Authors

  • Brenda Angelica JUVENTINO-GIL Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico.
  • Ana Tarin Gutiérrez IBÁÑEZ IBÁÑEZ Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico. https://orcid.org/0000-0002-3419-1445
  • Rosa Laura Ocaña de JESÚS Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico. https://orcid.org/0000-0001-9260-9419
  • Adriana VILLANUEVA-CARVAJAL Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico. https://orcid.org/0000-0002-2429-4387
  • Pedro Antonio GARCÍA-SAUCEDO Michoacan University of San Nicolás de Hidalgo, Faculty of Agrobiology, Uruapan, Michoacán, México. https://orcid.org/0000-0002-3418-5010
  • Martha Lidya Salgado SICLÁN Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico. https://orcid.org/0000-0002-7263-0621
  • Luz Raquel Bernal MARTÍNEZ Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico.
  • Gaspar Estrada CAMPUZANO Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico. https://orcid.org/0000-0002-1189-0470
  • Isis Kendra Sánchez LARA Autonomous University of Mexico State, Faculty of Agricultural Sciences, Toluca, State of Mexico, Mexico.

DOI:

https://doi.org/10.5327/fst.00398%20

Keywords:

phenols, trolox, bacteria, fungi

Abstract

Nationwide, the State of Mexico is the leading producer of loquat (Eriobotrya japonica); however, there are no records about the antioxidant and antimicrobial properties of such fruits from this place. The objective of this research was the evaluation of extracts of different loquat morphological structures (pulp with epidermis, leaves, and seeds) in ethanolic and hydromethanolic solvents. Four methods were used to evaluate the antioxidant capacity: 2,2-Diphenyl-1-Picrylhydrazyl (DPPH), N,N-Dimethyl-p-phenylenediamine Dihydrochloride (DMPD), Folin–Ciocalteu, and ferric-reducing antioxidant power (FRAP). Antimicrobial activity was determined using disk diffusion assays applied to two bacterial strains, Escherichia coli and Salmonella Typhimurium, and two phytopathogenic fungi strains, Fusarium oxysporum and Rhizoctonia solani. An analysis of variance and Tukey’s test at 5% were performed. There were significant differences between the plant material and the solvent used (p < 0.05). The results showed that the ethanol pulp extract presented the highest antioxidant capacity by the DPPH method; in DMPD, the ethanol leaf extract indicated high values of Trolox equivalents and presented the highest values for FRAP, and hydromethanol pulp also had high antioxidant activity; finally, for the Folin–Ciocalteu method, highest values were obtained from the seed extracts with both solvents. The extracts obtained from the pulp with ethanol and hydromethanol showed antibacterial capacity against E. coli and S. typhimurium. Antifungal activity was only present only in the pulp extract obtained with hydromethanol.

Downloads

Download data is not yet available.

References

Ayuntamiento de Tenango del Valle (2022). Plan de Desarrollo Municipal 2022-2024. Gaceta Municipal, 1(7). Retrieved from https://tenangodelvalle.gob.mx/docs/PDM%20FINAL%2022-24%20TENANGO.pdf

Balanta, J. F., Ramírez, L., & Caicedo-Bejarano, L. D. (2013). Características fisicoquímicas y actividad antimicótica del extracto de tomillo sobre cepas Fusarium oxysporum. Ingenium, 7(17), 29-35. https://doi.org/10.21774/ing.v7i17.314

Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft Und Technologie, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Castillo, R. F., Hernández, C. F. D., Gallegos, M. G., Flores, O. A., Rodríguez, H. R., & Aguilar, C. N. (2015). Efectividad in vitro de Bacillus y polifenoles de plantas nativas de México sobre Rhizoctonia-Solani. Revista Mexicana de Ciencias Agrícolas, 6(3). Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342015000300009&lng=es&tlng=es

Centurión, B. S. A., Aquino, J. A. S. & Bozzano, S.G. (2013). Extractos vegetales para el control alternativo del damping-off causado por Rhizoctonia solani en plántulas de tomate. Investigación Agraria, 15(1), 23-29. Retrieved from http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S2305-06832013000100004&lng=en&tlng=es

Cevallos, A. N. C., & Bravo, E. R. P. (2021). Efecto del tiempo de secado en hojas de níspero (Achras zapota) y relación de solvente para la obtención de compuestos antioxidantes. Retrieved from http://repositorio.espam.edu.ec/bitstream/42000/1364/1/TTAI18D.pdf

Contreras, A. M. E., Hernández, C. F. D., Sánchez, A. A., Gallegos, M. G., Jasso De Rodríguez, D. (2011). Actividad fungicida de extractos de Cowania plicata D. Don. contra Fusarium oxysporum Schlechtend. Fr. y de Pistacia lentiscus L. contra Colletotrichum coccodes Wallr.Hunghes. Revista Agraria Nueva Época, 8(1), 6-13.

Cornejal, N., Pollack, E., Kaur, R., Persaud, A., Plagianos, M., Juliani, H. R., Simon, J. E., Zorde, M., Priano, C., Koroch, A., & Fernández, R. J. A. (2023). Antimicrobial and Antioxidant Properties of Theobroma cacao, Bourreria huanita, Eriobotrya japonica, and Elettaria cardamomum - Traditional Plants Used in Central America. Journal of Medicinal Plants, 12(1), 1-17. https://doi.org/10.7275/wets-9869

Corzo, B. D. C. (2012). Evaluación de la actividad antimicrobiana del extracto etanólico de Cestrum buxifolium Kunth. Revista Mexicana de Ciencias Farmacéuticas, 43(3), 81-86. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300009&lng=es&tlng=es

Dania, V. O., Fadina, O. O., & Ayodele, M. (2014). Efficacy of Oryza sativa husk and Quercus phillyraeoides extracts for the in vitro and in vivo control of fungal rot disease of white yam (Dioscorea rotundata Poir). SpringerPlus, 3, 711. https://doi.org/10.1186/2193-1801-3-711

Fogliano, V., Verde, V., Randazzo, G., & Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3), 1035-1040. https://doi.org/10.1021/jf980496s

Grande, T. C., Aranaga, A. C., Flórez, L. E., & Araujo, P. L. (2020). Determinación de la actividad antioxidante y antimicrobiana de residuos de mora (Rubus glaucus Benth). Informador Técnico, 85(1), 64-82. https://doi.org/10.23850/22565035.2932

Gülçin, I., Topal, F., Beyza, S., Sarıkaya, O., Bursa, E., Bilsel, G., & Gören, A. C. (2011). Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.). Records of Natural Products, 5, 158-175.

Hamdy, E., Al-Askar, A. A., El-Gendi, H., Khamis, W. M., Behiry, S. I., Valentini, F., Abd-Elsalam, K. A., & Abdelkhalek, A. (2023). Zinc oxide nanoparticles biosynthesized by Eriobotrya japonica leaf extract: characterization, insecticidal and antibacterial properties. Plants, 12(15), 2826. https://doi.org/10.3390/plants12152826

Instituto Nacional de Estadística y Geografía (INEGI) (2010). Compendio de información geográfica municipal. Tenango del Valle. Retrieved from https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/15/15090.pdf

Kagale, S., Marimuthu, T., Thayumanavan, B., Nandakuman, R., & Samiyappan, R. (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. Oryzae. Physicological and Molecular Plan Pathology, 65(2), 91-100. https://doi.org/10.1016/j.pmpp.2004.11.008

Koneman, E. & Allen, S. (2008). Koneman diagnostic microbiológico: texto y atlas en color. Médica Panamericana.

Kumar, V., Mathela, C. S., Tewari, A. K., & Bisht, K. S. (2014). In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 114, 67-71. https://doi.org/10.1016/j.pestbp.2014.07.001

López, A., Almanza, F. J., Hernández, F. D., & Mendoza, E. M. (2005). Efecto inhibitorio de extractos vegetales acuosos sobre Rhizoctonia solani Kuhn in vitro. Revista Agraria, 2(1), 29-36. https://doi.org/10.59741/agraria.v2i1.323

Malheiro, J. F., Maillard, J.-Y., Borges, F., & Simões, M. (2019). Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control, International Biodeterioration & Biodegradation, 141, 71-78. https://doi.org/10.1016/j.ibiod.2018.06.003

Mendoza, L. M. R., Aguilar, A. L., & Guzmán, A. L. (2004). El cultivo del Níspero Eriobotrya Japonica L., una alternativa de producción frutícola. Folleto Técnico Núm. 1. Campo Experimental Uruapan. CIRPAC. INIFAP. Retrieved from https://docplayer.es/44589032-El-cultivo-del-nispero-eriobotrya-japonica-l-una-alternativa-de-produccion-fruticola.html

Ochoa, F. Y. M., Cerna, C. E., Landeros, F. J., Hernández, C. S., & Delgado, O. J. C. (2012). Evaluación in vitro de la actividad antifúngica de cuatro extractos vegetales metanólicos para el control de tres especies de Fusarium spp. Phyton, 81, 69-73.

Organización Mundial de la Salud (OMS) & Organización de las naciones unidas para la agricultura y la alimentación (FAO) (2007). Análisis de riesgos relativos a la inocuidad de los alimentos. Guía para las autoridades nacionales de inocuidad de los alimentos. OMS.

Parrado Muñoz, L. X. (2021). Caracterización morfológica, fisicoquímica y fitoquímica de níspero (Eriobotrya japonica Lindl.) en tres regiones de México. Instituto de Horticultura. Retrieved from https://repositorio.chapingo.edu.mx/items/e312c955-70a0-4770-ac92-c2527b2f1c58

Pinkee, P., Archana, M., & Subhadip H. (2011). Evaluation of antimicrobial activity of Ruta graveolens stem extracts by disc diffusion method. Journal of Phytology, 3(3). Retrieved from https://updatepublishing.com/journal/index.php/jp/article/view/2233

Pulido, R., Bravo, L., & Saura, C. F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396-3402. https://doi.org/10.1021/jf9913458

Rivas, M. M., Zaldaña, J., Gálvez, A., Castillo, U. G., Menjívar, J., Martínez, M. L., & Nuñez, M. J. (2020). Contenido de fenoles totales y actividad antioxidante en frutos de la flora salvadoreña. Revista Minerva, 3(2), 21-33. Retrieved from https://revistas.ues.edu.sv/index.php/minerva/article/view/2503

Rodríguez, C. A., Torres, H. S., Domínguez, C.A., Romero, G. A., & Silva, F. M. (2020). Extractos vegetales para el control de Fusarium oxysporum, Fusarium solani y Rhizoctonia solani, una alternativa sostenible para la agricultura. Abanico Agroforestal, 2, 1-13. https://doi.org/10.37114/abaagrof/2020.7

Rodríguez, D., Hernández, C. D., Angulo, S. J. L., Rodríguez, G. R., Villarreal, Q. J. A., & Lira, S. R. H. (2007). Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Industrial Crops and Products, 25(2), 111-116. https://doi.org/10.1016/j.indcrop.2006.08.007

Rosas, G. Y. (2015). Actividad antibacteriana del extracto metanólico y compuestos derivados de las hojas del níspero (eriobotrya japónica). Universidad Nacional Autónoma de México. Retrieved from https://repositorio.unam.mx/contenidos/285653

Safari, M., & Ahmady, A. S. (2019). Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnol. Equip., 33(1), 372-378. https://doi.org/10.1080/13102818.2019.1577701

Sali̇Hoğlu, E. M., Akaydın, G., Calişkan-Can, E., & Yardım-Akaydın, S. (2013). Evalution of Antioxidant Activity of Various Herbal Folk Medicines. Journal of Nutrition and Food Sciences, 3: 5. https://doi.org/10.4172/2155-9600.1000222

Servicio de Información Agroalimentaria y Pesquera (SIAP) (2019). Vocación Productiva de Níspero en el Estado de México. Secretaría del Campo, Unidad de Información Planeación, Programación y Evaluación. Retrieved from https://secampo.edomex.gob.mx/sites/secampo.edomex.gob.mx/files/files/Produccion_Campo/Nispero2019.pdf

Shen, Y., Chen, C., Cai, N., Yang, R., Chen, J., Kahramanoǧlu, İ., Okatan, V., Rengasamy, K. R. R., & Wan, C. (2021). The antifungal activity of loquat (Eriobotrya japonica Lindl.) leaves extract against penicillium digitatum. Frontiers in Nutrition, 8, 663584. https://doi.org/10.3389/fnut.2021.663584

Signorini, P. M., Orchietto, M., Civit, G. S., Bonilla, P. M., Cervantes, R. M., Calderón, V. M., Pérez, M. A., Espejel, M. M., & Almanza, R. C. (2006). Evaluación de riesgos de los rastros y mataderos municipales. Sistema de Evaluación Del Desempeño 2016 SHCP. Palacio Nacional. Retrieved from https://www.transparenciapresupuestaria.gob.mx/es/PTP/evaluaciones

Singleton, V. L., Orthofer, R., & Lamuela, R. R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Sotelo, I., Casas, N., & Camelo, G. (2010). Borojó (Borojoa patinoi): fuente de polifenoles con actividad antimicrobiana. Vitae, 17(3), 329-336.

Tanaka, K., Nishizono, S., Makino, N., Tamaru, S., Terai, O., & Ikeda, I. (2008). Hypoglycemic activity of Eriobotrya japonica seeds in type 2 diabetic rats and mice. Bioscience, Biotechnology, and Biochemistry, 72(3), 686-693. https://doi.org/10.1271/bbb.70411

Thombre, R., Parekh, F., Lekshminarayanan, P., & Francis, G. (2012). Studies on antibacterial and antifungal activity of silver nanoparticles synthesized using Artocarpus heterophyllus leaf extract. Biotechnology, Bioinformatics and Bioengineering, 2, 632-637.

Turola, B. R. C., Teixeira, G. T., Hornung, P. S., Ávila, S., & Hoffmann, R. R. (2017). Eriobotrya japonica seed as a new source of starch: assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties, Food Hydrocolloids, 77, 646-658. https://doi.org/10.1016/j.foodhyd.2017.11.006

Ullah, F., Ayaz, M., Sadiq, A., Ullah, F., Hussain, I., Shahid, M., Yessimbekov, Z., Adhikari‐Devkota, A., & Devkota, H. P. (2020). Potential role of plant extracts and phytochemicals against foodborne pathogens. Applied Sciences, 10(13), 4597. https://doi.org/10.3390/app10134597

Ventura, C. K. L. (2021). Determinación de metabolitos secundarios, actividad antioxidante, de las hojas de Eriobotrya japonica “níspero”. Universidad Nacional San Luis Gonzaga de Ica. Retrieved from https://hdl.handle.net/20.500.13028/3481

Vilaplana, M. (2007). Antioxidantes presentes en los alimentos. Vitaminas, Minerales y Suplementos, 26(10), 11-41.

Zhao, T., Gao, F., Zhou, L., & Song, T. (2013). Essential oil from inula britannica extraction with SF-CO2 and its antifungal activity. Journal of Integrative Agriculture, 12(10), 1791-1798. https://doi.org/10.1016/S2095-3119(13)60382-2

Zhou, J.-X., Braun, M. S., Wetterauer, P., Wetterauer, B., & Wink, M. (2019). Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines, 6(2), 43. https://doi.org/10.3390/medicines6020043

Downloads

Published

2024-12-20

How to Cite

JUVENTINO-GIL, B. A., IBÁÑEZ, A. T. G. I., JESÚS, R. L. O. de, VILLANUEVA-CARVAJAL, A., GARCÍA-SAUCEDO, P. A., SICLÁN, M. L. S., MARTÍNEZ, L. R. B., CAMPUZANO, G. E., & LARA, I. K. S. (2024). Uno Antioxidant capacity and antimicrobial activity of loquat (Eriobotrya japonica) extracts from Tenango del Valle, State of Mexico. Food Science and Technology, 44. https://doi.org/10.5327/fst.00398

Issue

Section

Original Articles