Unexpected flavors: development of crackers with nonconventional food plants as calcium source using experimental design

Authors

DOI:

https://doi.org/10.5327/fst.00361%20

Keywords:

plant-based calcium, new product development, alternative calcium source

Abstract

Alternative calcium sources, such as nonconventional food plants, are essential for those who avoid dairy. However, consuming plant-based calcium with meals may compete for iron absorption. The aim of this study was to identify potential calcium sources among these plants and develop a plant-based cracker. Amaranthus viridis, Anredera cordifolia, Lactuca canadensis, Pereskia aculeata, Portulaca oleracea, and Stachys byzantine were studied. After flour was produced, proximate composition and calcium and phytate content were determined. The cracker formulations were defined using the Plackett–Burman design, followed by the Central Composite Rotatable Design, and the acceptance score was the response variable (p ≤ 1%). All samples had high calcium content, above 1,000 mg.100 g-1 of flour. Considering the phytate:calcium ratio, P. aculeata was selected for cracker preparation. In the first design, the significant variables were vegetable flour and coconut oil. These ingredients varied in the second design, in which the proposed model was significant but did not have a satisfactory R-value (12.60%), probably due to the lack of discrimination between the samples. However, in the second design, the average scores increased (first = 4.1 and second = 5.6), indicating that acceptance was better. In conclusion, P. aculeata is a potential calcium source and can be incorporated into other preparations, beyond traditional salads.

Downloads

Download data is not yet available.

References

Abdullah, N., Nawawi, A., & Othman, I. (2000). Fungal spoilage of starch-based foods in relation to its water activity (a w ). Journal of Stores Products Research, 36(1), 47-54. https://doi.org/10.1016/S0022-474X(99)00026-0

Andini, R., Yoshida, S., & Ohsawa, R. (2013). Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of amaranths. Agronomy, 3(2), 391-403. https://doi.org/10.3390/agronomy3020391

AOAC (2019). Official Methods of Analysis of AOAC International (21st ed.). AOAC International.

Balderrama, J. G. P., & Cadima, S. C. C. (2014). Water adsorption isotherms of amaranth (Amaranthus caudatus) flour. Food and Nutrition Sciences, 5(2), 153-157. https://doi.org/10.4236/fns.2014.52020

Bourassa, M. W., Abrams, S. A.,Belizán, J. M., Boy, E., Cormick, G., Quijano, C. D., Gibson, S., Gomes, F., Hofmeyr, G. J., Humphrey, J., Kraemer, K., Lividini, K., Neufeld, L. M., Palacios, C., Shlisky, J., Thankachan, P., Villalpando, S., & Weaver, C. M. (2022). Interventions to improve calcium intake through foods in populations with low intake. Annals of the New York Academy of Sciences, 1511(1), 40-58. https://doi.org/10.1111/nyas.14743

Brasil (2020). Instrução Normativa da Agência Nacional de Vigilância Sanitária nº 75, de 8 de outubro de 2020. Estabelece os requisitos técnicos para declaração da rotulagem nutricional nos alimentos embalados.

Charoenkiatkul, S., Kriengsinyos, W., Tuntipopipat, S., Suthutvoravut, U., & Weaver, C. M. (2008). Calcium absorption from commonly consumed vegetables in healthy thai women. Journal of Food Science, 73(9), H218-H221. https://doi.org/10.1111/j.1750-3841.2008.00949.x

da Silva Porto, F. G., Campos, Â. D., Carreño, N. L. V., & Garcia, I. T. S. (2022). Pereskia aculeata leaves: properties and potentialities for the development of new products. Natural Product Research, 36(8), 4821-4832. https://doi.org/10.1080/14786419.2021.2010070

de Souza, A. H., Mendonça, H. de O. P., de Paula, A. C. C. F. F., Augusti, R., Fante, C. A., Melo, J. O. F., & Carlos, L. de A. (2022). Influence of harvest time on the chemical profile of pereskia aculeate mill. Using paper spray mass spectrometry. Molecules, 27(13), 4276. https://doi.org/10.3390/molecules27134276

Drapron, R. (1985). Enzyme activity as a function of water activity. In Simatos, D., & Multon, J. L. (Eds.), Properties of Water in Foods (pp. 171-190). Springer Netherlands. https://doi.org/10.1007/978-94-009-5103-7_11

Gomes, J. C. (1996). Análise de alimentos. Editora UFV.

Hag, L. van’t, Danthe, J., Handschin, S., Mutuli, G. P., Mbuge, D., & Mezzenga, R. (2020). Drying of African leafy vegetables for their effective preservation: The difference in moisture sorption isotherms explained by their microstructure. Food and Function, 11(1), 955-964. https://doi.org/10.1039/c9fo01175g

Haug, W., & Lantzsch, H.-J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), 1423-1426.

Instituto Adolfo Lutz (2008). Normas Analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análises de alimentos (4th ed.). Instituto Adolfo Lutz.

Institute of Medicine (2011). Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary reference intakes for calcium and vitamin D. National Academies Press. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK56056/

Knez, M., & Stangoulis, J. C. R. (2021). Calcium biofortification of crops–challenges and projected benefits. Frontiers in Plant Science, 12, 669053. https://doi.org/10.3389/fpls.2021.669053

Lacey, J., & Magan, N. (1991). Fungi in cereal grains: their occurrence and water and temperature relationships. In Chelkowski, J. (Ed.), Cereal grain: mycotoxins, fungi and quality in drying and storage (pp. 77-118). Elsevier.

Melse-Boonstra, A. (2020). Bioavailability of micronutrients from nutrient-dense whole foods: zooming in on dairy, vegetables, and fruits. Frontiers in Nutrition, 7, 00101. https://doi.org/10.3389/fnut.2020.00101

Miles, F. L., Orlich, M. J., Mashchak, A., Chandler, P. D., Lampe, J. W., Duerksen-Hughes, P., & Fraser, G. E. (2022). The biology of veganism: plasma metabolomics analysis reveals distinct profiles of vegans and non-vegetarians in the adventist health study-2 cohort. Nutrients, 14(3), 709. https://doi.org/10.3390/nu14030709

Moskowitz, H. R., & Sidel, J. L. (1971). Magnitude and hedonic scales of food acceptability. Journal of Food Science, 36(4), 677-680. https://doi.org/10.1111/j.1365-2621.1971.tb15160.x

Neuhouser, M. L. (2018). The importance of healthy dietary patterns in chronic disease prevention. Nutrition Research, 70, 30-36. https://doi.org/10.1016/j.nutres.2018.06.002

Rodrigues, M. I., & Iemma, A. F. (2007). Planejamento de experimentos e otimização de processos (2nd ed.). Editora Casa do Pão.

Satija, A., & Hu, F. B. (2018). Plant-based diets and cardiovascular health. Trends in Cardiovascular Medicine, 28(7), 437-441. https://doi.org/10.1016/j.tcm.2018.02.004

Schepers, J., & Annemans, L. (2018). The potential health and economic effects of plant-based food patterns in Belgium and the United Kingdom. Nutrition, 48, 24-32. https://doi.org/10.1016/j.nut.2017.11.028

Silva, A. D., Ávila, S., Küster, R. T., dos Santos, M. P., Grassi, M. T., de Queiroz Pereira Pinto, C., Miguel, O. G., & Ferreira, S. M. R. (2021). In vitro bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of Amaranthus viridis. Plant Foods for Human Nutrition, 76(4), 478-486. https://doi.org/10.1007/s11130-021-00924-5

Słupski, J., Gębczyński, P., Korus, A., & Lisiewska, Z. (2014). Effect of the method of preparation for consumption on calcium retention, calcium:phosphorus ratio, nutrient density and recommended daily allowance in fourteen vegetables. International Journal of Food Sciences and Nutrition, 65(4), 458-464. https://doi.org/10.3109/09637486.2013.873889

Stone, H. S., & Sidel, J. L. (2004). Sensory evaluation practices (3rd ed.). Elsevier.

TACO (2011). Tabela Brasileira de Composição de Alimentos - TACO (4th ed.). NEPA, Unicamp.

Vega, C. F. P., Kemmelmeier, K., Rufini, M., Carvalho, T. S. de, & Moreira, F. M. de S. (2020). Ora-pro-nobis (Pereskia aculeata Mill.) nutrition as related to soil chemical and physical attributes and plant growth-promoting microorganisms. Journal of Soil Science and Plant Nutrition, 20(4), 1637-1654. https://doi.org/10.1007/s42729-020-00235-9

Weaver, C. M., Proulx, W. R., & Heaney, R. (1999). Choices for achieving adequate dietary calcium with a vegetarian diet. American Journal of Clinical Nutrition, 70(3), 543s-548s. https://doi.org/10.1093/ajcn/70.3.543s

White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

Downloads

Published

2024-12-13

How to Cite

NAKAJIMA, V. M., SILVA, I. de S. P., PEREIRA, J. P. F., POLICARPO, N. L., MARTINS, M. V., & SOUSA, R. A. de. (2024). Unexpected flavors: development of crackers with nonconventional food plants as calcium source using experimental design. Food Science and Technology, 44. https://doi.org/10.5327/fst.00361

Issue

Section

Original Articles