Box–Behnken design to determine optimal fermentation conditions for apple-fortified mulberry wine using Saccharomyces bayanus

Authors

DOI:

https://doi.org/10.5327/fst.00036

Keywords:

apple fortified mulberry wine, S. bayanus, ethanol, bioactive compounds, optimization

Abstract

Wine is a fermented product of fruit juice. Mulberry and apple juice can also be used to produce wine. Several factors influence the alcoholic fermentation of the must; therefore, the optimization of the mulberry wine fermentation conditions with the dry yeast strain Saccharomyces bayanus (concentration varied from 0.15 to 0.25 g/L), fermentation conditions as pH value (from 3.5 to 4.5), and total soluble solid (TSS) content (24–28°Brix) were performed in this study. To evaluate the influence of these factors, a Box–Behnken design was used to minimize the number of factor combinations required, which allows the determination of optimal fermentation conditions (pH, TSS content, and dry yeast concentration) to produce wines with high alcohol and bioactive compounds (total anthocyanin (TAC) and polyphenol content (TPC)). Based on the analysis of experimental data, the second-order response surface models were developed to describe the relationship between initial pH value, TSS, and dry yeast concentration on wine quality acquisition (ethanol content and bioactive compounds). The results of the analysis of variance (ANOVA) showed that the model setup by response surface quadratic regression was suitable for predicting the wine quality. It was observed that the quality of the apple-fortified mulberry wine was significantly affected by all variables. The optimal contents of ethanol, total anthocyanin, and total polyphenol were achieved at 12.97% (v/v), 171.85 mg/L, and 87.17 mgGAE/L, respectively, when fermented in juice medium with optimal values of pH, TSS, and yeast concentration of 3.9, 26°Brix, and 0.22 g/L, respectively.

 

Downloads

Download data is not yet available.

Author Biographies

Vo Quoc TIEN, Can Tho University, Institute of Food and Biotechnology, Can Tho City, Vietnam.

 

 

Tran Ngoc GIAU, Can Tho University, Institute of Food and Biotechnology, Can Tho City, Vietnam.

 

 

Hong Van HAO, Can Tho University, Institute of Food and Biotechnology, Can Tho City, Vietnam.

 

 

Nguyen Van THANH, Can Tho University, Institute of Food and Biotechnology, Can Tho City, Vietnam.

 

 

Nguyen Ngoc THANH, Can Tho University, Institute of Food and Biotechnology, Can Tho City, Vietnam.

 

 

Ngo Van TAI, King Mongkut’s Institute of Technology Ladkrabang, School of Food Industry, Bangkok, Thailand.

 

 

 

Pham Cam DANG, Can Tho University, Environment and Natural Resources College, Land Resources Department, Can Tho City, Viet Nam.

 

 

 

Vo Quang MINH, Can Tho University, Environment and Natural Resources College, Land Resources Department, Can Tho City, Viet Nam.

 

 

References

Attri, B. L. (2009). Effect of initial sugar concentration on phisyco-chemical characteristics and sensory quality of cashew apple wine. Natural Product Radiance, 8(4), 374-379.

Batt, C. A., & Tortorello, M. L. (2014). Encyclopedia of Food Microbiology. Elsevier.

Belloch, C., Orlic, S., Barrio, E., & Querol, A. (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology, 122(1-2), 188-195. https://doi.org/10.1016/j.ijfoodmicro.2007.11.083

Chan, E. W. C., Phui-Yan, L. Y. E., & Siu-Kuin, W. O. N. G. (2016). Phytochemistry, pharmacology, and clinical trials of Morus alba. Chinese Journal of Natural Medicines, 14(1), 17-30. https://doi.org/10.3724/sp.j.1009.2016.00017

D'Amato, D., Corbo, M. R., Nobile, M. A. D., & Sinigaglia, M. (2006). Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. International Journal of Food Science & Technology, 41(10), 1152-1157. https://doi.org/10.1111/j.1365-2621.2005.01128.x

Eglinton, J. M., McWilliam, S. J., Fogarty, M. W., Francis, I. L., Kwiatkowski, M. J., Hoj, P. B., & Henschke, P. A. (2000). The effect of Saccharomyces bayanus‐mediated fermentation on the chemical composition and aroma profile of Chardonnay wine. Australian Journal of Grape and Wine Research, 6(3), 190-196. https://doi.org/10.1111/j.1755-0238.2000.tb00178.x

Fleet, G. H. & Heard, U. (1993). The microbiology of alcoholic beverages. In B. B. B. Wood (ed.). Microbiology of Fermented Foods. Blackie Academic and Professional.

Gamero, A., Belloch, C., Ibanez, C., & Querol, A. (2014). Molecular analysis of the genes involved in aroma synthesis in the species S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum in winemaking conditions. PLoS One, 9(5), e97626. https://doi.org/10.1371/journal.pone.0097626

Gençdağ, E., Özdemir, E. E., Demirci, K., Görgüç, A., & Yılmaz, F. M. (2022). Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Current Plant Biology, 29, 100238. https://doi.org/10.1016/j.cpb.2022.100238

González, S. S., Gallo, L., Climent, M. D., Barrio, E., & Querol, A. (2007). Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. International Journal of Food Microbiology, 116(1), 11-18. https://doi.org/10.1016/j.ijfoodmicro.2006.10.047

Hoff, J. W. (2012). Molecular typing of wine yeasts: Evaluation of typing techniques and establishment of a database (Doctoral dissertation). Stellenbosch University.

Hossain, M. A., AL-Raqmi, K. A. S., Al-Mijizy, Z. H., Weli, A. M., & Al-Riyami, Q. (2013). Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pacific Journal of Tropical Biomedicine, 3(9), 705-710. https://doi.org/10.1016/s2221-1691(13)60142-2

Hu, J., Vinothkanna, A., Wu, M., Ekumah, J. N., Akpabli‐Tsigbe, N. D. K., & Ma, Y. (2021). Tracking the dynamic changes of a flavor, phenolic profile, and antioxidant properties of Lactiplantibacillus plantarum‐and Saccharomyces cerevisiae‐fermented mulberry wine. Food Science & Nutrition, 9(11), 6294-6306. https://doi.org/10.1002/fsn3.2590

Januszek, M., Satora, P., Wajda, Ł., & Tarko, T. (2020). Saccharomyces bayanus enhances volatile profile of apple brandies. Molecules, 25(14), 3127. https://doi.org/10.3390/molecules25143127

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080%2F16546628.2017.1361779

Kschonsek, J., Wolfram, T., Stöckl, A., & Böhm, V. (2018). Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants, 7(1), 20. https://doi.org/10.3390%2Fantiox7010020

Libkind, D., Hittinger, C. T., Valério, E., Gonçalves, C., Dover, J., Johnston, M., Gonçalves, P., & Sampaio, J. P. (2011). Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences, 108(35), 14539-14544. https://doi.org/10.1073/pnas.1105430108

Liu, L. K., Chou, F. P., Chen, Y. C., Chyau, C. C., Ho, H. H., & Wang, C. J. (2009). Effects of mulberry (Morus alba L.) extracts on lipid homeostasis in vitro and in vivo. Journal of Agricultural and Food Chemistry, 57(16), 7605-7611. https://doi.org/10.1021/jf9014697

Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., & Huang, W. (2015). Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4), M800-M808. https://doi.org/10.1111/1750-3841.12813

Magalhães, F., Krogerus, K., Vidgren, V., Sandell, M., & Gibson, B. (2017). Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae× Saccharomyces eubayanus hybrids. Journal of Industrial Microbiology and Biotechnology, 44(8), 1203-1213. https://doi.org/10.1007/s10295-017-1947-7

Maicas, S., & Mateo, J. J. (2020). Sustainability of wine production. Sustainability, 12(2), 559. https://doi.org/10.3390/su12020559

Muñoz‐Bernal, E., Deery, M. J., Rodríguez, M. E., Cantoral, J. M., Howard, J., Feret, R., Natera, R., Lilley, K. S., & Fernández‐Acero, F. J. (2016). Analysis of temperature‐mediated changes in the wine yeast Saccharomyces bayanus var uvarum. An oenological study of how the protein content influences wine quality. Proteomics, 16(4), 576-592. https://doi.org/10.1002/pmic.201500137

Peng, C. H., Liu, L. K., Chuang, C. M., Chyau, C. C., Huang, C. N., & Wang, C. J. (2011). Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. Journal of Agricultural and Food Chemistry, 59(6), 2663-2671. https://doi.org/10.1021/jf1043508

Reddy, L. V. A., & Reddy, O. V. S. (2011). Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food and Bioproducts Processing, 89(4), 487-491. https://doi.org/10.1016/j.fbp.2010.11.007

Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (Eds.). (2006). Handbook of enology (V. 1). John Wiley & Sons. https://doi.org/10.1002/0470010363

Rohela, G. K., Shukla, P., Kumar, R., & Chowdhury, S. R. (2020). Mulberry (Morus spp.): An ideal plant for sustainable development. Trees, Forests and People, 2, 100011. https://doi.org/10.1016/j.tfp.2020.100011

Sui, X., Dong, X., & Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 163, 163-170. https://doi.org/10.1016/j.foodchem.2014.04.075

Tai, N. V., & Thanh, N. V. (2020). Identification and characterization of yeast isolates from maprang (Bouea macrophylla Griffith) growing in Vietnam. Malaysian Applied Biology, 49(3), 23-30. https://doi.org/10.55230/mabjournal.v49i3.1537

Tao, Y., Wang, Y., Yang, J., Wang, Q., Jiang, N., Chu, D. T., ... & Zhou, J. (2017). Chemical composition and sensory profiles of mulberry wines as fermented with different Saccharomyces cerevisiae strains. International Journal of Food Properties, 20(Suppl. 2), 2006-2021. https://doi.org/10.1080/10942912.2017.1361970

Thuy, N. M., Cuong, N. P., Tuyen N. T. M., Phuoc, N. H. (2011). Clarification and stabilization of pineapple wine. Scientific Journal of Can Tho University, 18b, 73-82.

Thuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022a). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis) Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. https://doi.org/10.3390/horticulturae8121199

Thuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022b). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. https://doi.org/10.3390/molecules27238570

Tosi, E., Azzolini, M., Guzzo, F., & Zapparoli, G. (2009). Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Journal of Applied Microbiology, 107(1), 210-218. https://doi.org/10.1111/j.1365-2672.2009.04196.x

Van Tai, N., Linh, M. N., & Thuy, N. M. (2021). Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology. Journal of Applied Biology and Biotechnology, 9(6), 56-62. https://doi.org/10.7324/JABB.2021.9607

Wang, D., Xu, Y., Hu, J., & Zhao, G. (2004). Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. Journal of the Institute of Brewing, 110(4), 340-346. https://doi.org/10.1002/j.2050-0416.2004.tb00630.x

Wrolstad, R. E., Skrede, G., Lea, P. E. R., & Enersen, G. (1990). Influence of sugar on anthocyanin pigment stability in frozen strawberries. Journal of Food Science, 55(4), 1064-1065. https://doi.org/10.1111/j.1365-2621.1990.tb01598.x

Wu, C. H., Lin, M. C., Wang, H. C., Yang, M. Y., Jou, M. J., & Wang, C. J. (2011). Rutin inhibits oleic acid induced lipid accumulation via reducing lipogenesis and oxidative stress in hepatocarcinoma cells. Journal of Food Science, 76(2), T65-T72. https://doi.org/10.1111/j.1750-3841.2010.02033.x

Yalcin, S. K., & Ozbas, Z. Y. (2008). Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Brazilian Journal of Microbiology, 39(2), 325-332. https://doi.org/10.1590%2FS1517-838220080002000024

You, Y. L., Li, N., Han, X., Guo, J. L., Zhao, Y., Liu, G. J., Huang, W. D., & Zhan, J. C. (2018). Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innovative Food Science & Emerging Technologies, 48, 1-10. https://doi.org/10.1016/j.ifset.2018.05.007

Yuan, Q. & Zhao, L. (2017). The mulberry (Morus alba L.) fruit‐A review of characteristic components and health benefits. Journal of Agricultural and Food Chemistry, 65(48), 10383-10394. https://doi.org/10.1021/acs.jafc.7b03614

Downloads

Published

2023-10-17

How to Cite

THUY, N. M., TIEN, V. Q., GIAU, T. N., HAO, H. V., THANH, N. V., THANH, N. N., TAI, N. V., DANG, P. C., & MINH, V. Q. (2023). Box–Behnken design to determine optimal fermentation conditions for apple-fortified mulberry wine using Saccharomyces bayanus : . Food Science and Technology, 43. https://doi.org/10.5327/fst.00036

Issue

Section

Original Articles