Use of agro-industrial waste from the processing of oilseeds and Amazonian fruits

Authors

DOI:

https://doi.org/10.5327/fst.00352

Keywords:

organic acids, amazon fruits, aggregation value, new products, subproducts

Abstract

The processing of fruits and vegetables in general generates a significant amount of waste, which is often discarded in the environment, losing the potential for using it in obtaining and/or developing other value-added products. Within this theme, some waste arising from the processing of Amazonian fruits and oilseeds, such as açaí and andiroba, deserves attention due to the large volume of waste generated from these species. The development of new ways of using these as raw materials to obtain products with high added value becomes a challenge, which can directly impact the preservation of the environment by reducing the disposal of these wastes and socioeconomic conditions, since viable alternatives of use can generate demand for specialized work. This literature review presents a survey of recent data on two raw materials: açaí and andiroba, in addition to the current picture on production, market, composition, and applications.

Downloads

Download data is not yet available.

References

Araujo, D. D. M., Bordinhon, A. M., Fujimoto, R. Y., Da Silva, W. M., Da Silva, D. R., & Da Silva, J. (2020). Digestibilidade de farinhas de coprodutos de abacaxi, manga e maracujá pelo tambaqui (Colossoma macropomum). Holos, 5, 1-10. https://doi.org/10.15628/holos.2020.9380

Awasthi, M. K., Sindhu, R., Sirohi, R., Kumar, V., Ahluwalia, V., Binod, P., Juneja, A., Kumar, D., Yan, B., Sarsaiya, S., Zhang, Z., Pandey, A., & Taherzadeh, M. J. (2022). Agricultural waste biorefinery development towards circular bioeconomy. Renewable and Sustainable Energy Reviews, 158. https://doi.org/10.1016/j.rser.2022.112122

Barbosa, J. R., & Carvalho Junior, R. N. (2022). Food sustainability trends - How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends in Food Science & Technology, 124, 86-95. https://doi.org/10.1016/J.TIFS.2022.04.005

Barros, S. de S., Oliveira, E. da S., Pessoa Jr, W. A. G., Rosas, A. L. G., Freitas, A. E. M. de, Lira, M. S. de F., Calderaro, F. L., Saron, C., & Freitas, F. A. (2021). Sementes de açaí (Euterpe precatoria Mart.) como uma nova fonte alternativa de celulose: Extração e caracterização. Research, Society and Development, 10(7), e31110716661. https://doi.org/10.33448/rsd-v10i7.16661

Brito, A. D., Coelho, R. de F. R., & Rosal, L. F. (2020). Os extrativistas de andiroba em projetos de assentamentos agroextrativistas (PAEX) da várzea de Igarapé-Miri, Pará, Brasil. Revista Agroecossistemas, 11(2), 82. https://doi.org/10.18542/ragros.v11i2.7303

Cantu-Jungles, T. M., Iacomini, M., Cipriani, T. R., & Cordeiro, L. M. C. (2017). Isolation and characterization of a xylan with industrial and biomedical applications from edible açaí berries (Euterpe oleraceae). Food Chemistry, 221, 1595-1597. https://doi.org/10.1016/J.FOODCHEM.2016.10.133

Carvalho, A. V., De Andrade Mattietto, R., & Beckman, J. C. (2017). Estudo da estabilidade de polpas de frutas tropicais mistas congeladas utilizadas na formulação de bebidas. Brazilian Journal of Food Technology, 20. https://doi.org/10.1590/1981-6723.2316

Carvalho, S. B. de A., Carvalho, C. C., Sirqueira, B. P. C., Silva, R. de A., Nylander, B. V. R., & Barros, C. A. V. de. (2019). Estudo em bases de patentes sobre a andiroba e suas propriedades anti-inflamatórias. Pará Research Medical Journal, 3(2). https://doi.org/10.4322/prmj.2019.019

Centro de Gestão e Estudos Estratégicos (CGEE) (2010). Química verde no Brasil: 2010-2030. CGEE.

Companhia Nacional de Abastecimento (Conab) (2019). Análise Mensal CONAB. CONAB.

Correa, B. A., Parreira, M. C., Martins, J. D. S., Ribeiro, R. C., & Da Silva, E. M. (2019). Reaproveitamento de resíduos orgânicos regionais agroindustriais da amazônia tocantina como substratos alternativos na produção de mudas de alface. Revista Brasileira de Agropecuária Sustentável, 9(1). https://doi.org/10.21206/rbas.v9i1.7970

Correa de Oliveira, P. M., Barreto Sousa, J. P., Albernaz, L. C., Coelho-Ferreira, M., & Salmen Espindola, L. (2022). Bioprospection for new larvicides against Aedes aegypti based on ethnoknowledge from the Amazonian São Sebastião de Marinaú riverside community. Journal of Ethnopharmacology, 293, 115284. https://doi.org/10.1016/J.JEP.2022.115284

Costa, T. V., Santos, M. L., Silva, L. T. S., & Chaves, M. A. (2020). Estudos prévios para o encapsulamento de compostos usando açaí, whey protein e carragena. In A. M. S. Nascimento, I. B. de Souza & R. R. dos Santos (Eds.), Ciência, tecnologia e inovação: do campo à mesa (pp. 586-603). Instituto Internacional Despertando Vocações. https://doi.org/10.31692/978-65-88970-00-3.v.2.586-603

Da Costa Castro, C. D. P., Dias, C. G. B. T., & De Assis Fonseca Faria, J. (2010). Production and evaluation of recycled polymers from açaí fibers. Materials Research, 13(2), 159-163. https://doi.org/10.1590/s1516-14392010000200007

Da Silva, D. L., De Araújo, M. E. L., & Lameira, C. N. (2021). Controle de qualidade do vinho de açaí, comercializado nos municipios de Belém. https://doi.org/10.51161/rems/735

Da Silva, E. P., Siqueira, H. H., Damiani, C., & Vilas Boas, E. V. de B. (2016). Effect of adding flours from marolo fruit (Annona crassiflora Mart) and jerivá fruit (Syagrus romanzoffiana Cham Glassm) on the physicals and sensory characteristics of food bars. Food Science and Technology, 36(1), 140-144. https://doi.org/10.1590/1678-457X.0074

De Azevedo, A. R. G., Marvila, M. T., Tayeh, B. A., Cecchin, D., Pereira, A. C., & Monteiro, S. N. (2021). Technological performance of açaí natural fibre reinforced cement-based mortars. Journal of Building Engineering, 33, 101675. https://doi.org/10.1016/J.JOBE.2020.101675

De Las Casas, C. A. (2019). El bioma amazónico y el Acuerdo de París: cooperación y gobernanza. Revista de Estudios Brasileños, 6(11), 155. https://doi.org/10.14201/reb2019611155167

De Lima Mesquita, A., Barrero, N. G., Fiorelli, J., Christoforo, A. L., De Faria, L. J. G., & Lahr, F. A. R. (2018). Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) Fruit: A new alternative for the particleboard industry with its potential application in civil construction and furniture. Industrial Crops and Products, 112, 644-651. https://doi.org/10.1016/J.INDCROP.2017.12.074

De S. Barros, S., Pessoa Junior, W. A. G., Sá, I. S. C., Takeno, M. L., Nobre, F. X., Pinheiro, W., Manzato, L., Iglauer, S., & de Freitas, F. A. (2020). Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology, 312, 123569. https://doi.org/10.1016/j.biortech.2020.123569

Dos Santos, K. I. P., Benjamim, J. K. F., da Costa, K. A. D., dos Reis, A. S., de Souza Pinheiro, W. B., & Santos, A. S. (2021). Metabolomics techniques applied in the investigation of phenolic acids from the agro-industrial by-product of Carapa guianensis Aubl. Arabian Journal of Chemistry, 14(11), 103421. https://doi.org/10.1016/J.ARABJC.2021.103421

Ferreira Monteiro, A., Santos Miguez, I., Pedro, J., Barros Silva, R., Sant’, A., & Da Silva, A. (2019). High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Scientific Reports, 9, 10939. https://doi.org/10.1038/s41598-019-47401-3

Hu, X., Shi, Y., Zhang, P., Miao, M., Zhang, T., & Jiang, B. (2016). d-Mannose: Properties, Production, and Applications: An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(4), 773-785. https://doi.org/10.1111/1541-4337.12211

Instituto Brasileiro de Geografia e Estatística (IBGE) (2022). Produção de Açaí (cultivo). Instituto Brasileiro de Geografia e Estatística. Retrieved from https://www.ibge.gov.br/explica/producao-agropecuaria/acai-cultivo/am

Institute for Sustainable Agricultural and Forestry Development of the State of Amazonas (IDAM). (2020). Relatório de Atividades 2020: RAIDAM. IDAM.

Jorge, F. T. A. (2020). Viabilidade técnica e econômica de biorrefinaria de sementes de açaí: Produção de manose. Universidade Federal do Rio de Janeiro.

Ketnawa, S., Reginio, F. C., Thuengtung, S., & Ogawa, Y. (2022). Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review. Critical Reviews in Food Science and Nutrition, 62(17), 4684-4705. https://doi.org/10.1080/10408398.2021.1878100

Linan, L. Z., Cidreira, A. C. M., da Rocha, C. Q., de Menezes, F. F., Rocha, G. J. M., & Paiva, A. E. M. (2021). Utilization of acai berry residual biomass for extraction of lignocellulosic byproducts. Journal of Bioresources and Bioproducts, 6(4), 323-337. https://doi.org/10.1016/J.JOBAB.2021.04.007

Lira, G. B., Lopes, A. S. da C., Nascimento, F. C. de A., Conceição, G. dos S., Brasil, D. do S. B. (2021). Processos de extração e usos industriais dos óleos de andiroba e açaí: uma revisão. Research, Society and Development, 10(12), e229101220227. https://doi.org/10.33448/rsd-v10i12.20227

Madeira di Beneditto, A. P., & Siciliano, S. (2021). Itens alimentares, parasitas e plásticos: Notas sobre o conteúdo estomacal de aves marinhas no Rio de Janeiro. Brazilian Journal of Development, 7, 73015-73024. https://doi.org/10.34117/bjdv7n7-465

Maia, M. N. dos S., Ramos, G. D. M., Ramos, G. D. M., Antunes, V. de C., & Antunes, V. de C. (2022). Uso de coprodutos agroindustriais na fabricação de biscoitos. Brazilian Journal of Development, 8(1), 1738-1747. https://doi.org/10.34117/bjdv8n1-109

Mares, E. K. L., Gonçalves, M. A., da Luz, P. T. S., da Rocha Filho, G. N., Zamian, J. R., & da Conceição, L. R. V. (2021). Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process. Fuel, 299, 120887. https://doi.org/10.1016/j.fuel.2021.120887

Matte, W. D., Silva, H. M. da, & Zeferino, C. P. (2021). Subprodutos da mandioca como alimento alternativo para frangos de corte. Pubvet, 15(8), 1-11. https://doi.org/10.31533/pubvet.v15n08a895.1-11

Melo, K. M., Oliveira, L. F. S., da Rocha, R. M., Ferreira, M. A. P., Fascineli, M. L., Milhomem-Paixão, S. S. R., Grisolia, C. K., Santos, A. S., Salgado, H. L. C., Muehlmann, L. A., Azevedo, R. B., Pieczarka, J. C., & Nagamachi, C. Y. (2021). Andiroba oil and nanoemulsion (Carapa guianensis Aublet) reduce lesion severity caused by the antineoplastic agent doxorubicin in mice. Biomedicine and Pharmacotherapy, 138. https://doi.org/10.1016/j.biopha.2021.111505

Mendonça, A. P., Almeida, F. de A. C., Oliveira, A. dos S., Rosa, J. C., Araújo, M. E. R., & Sampaio, P. de T. B. (2020). Extração de óleo de andiroba por prensa: rendimento e qualidade de óleo de sementes submetidas a diferentes teores de água e temperaturas de secagem. Scientia Forestalis, 48(125). https://doi.org/10.18671/scifor.v48n125.09

Mohanty, A., Mankoti, M., Rout, P. R., Meena, S. S., Dewan, S., Kalia, B., Varjani, S., Wong, J. W. C., & Banu, J. R. (2022). Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. International Journal of Food Microbiology, 365. https://doi.org/10.1016/j.ijfoodmicro.2022.109538

Nascimento, G. O., Souza, D. P., Santos, A. S., Batista, J. F., Rathinasabapathi, B., Gagliardi, P. R., & Gonçalves, J. F. C. (2019). Lipidomic profiles from seed oil of Carapa guianensis Aubl. and Carapa vasquezii Kenfack and implications for the control of phytopathogenic fungi. Industrial Crops and Products, 129, 67-73. https://doi.org/10.1016/j.indcrop.2018.11.069

Nieto, G., Fernández‐lópez, J., Pérez‐álvarez, J. A., Peñalver, R., Ros, G., & Viuda‐martos, M. (2021). Valorization of citrus co‐products: Recovery of bioactive compounds and application in meat and meat products. Plants, 10(6), 1069. https://doi.org/10.3390/plants10061069

Of, B., Composition, L., Fuel, F. O. R., Production, E., Context, T. H. E., & Biorefinery, O. F. (2008). Series on biotechnology (Vol. 2).

Oliveira, A. C. de, Aguilar-Galvez, A., Campos, D., & Rogez, H. (2019). Absorption of polycyclic aromatic hydrocarbons onto depolymerized lignocellulosic wastes by Streptomyces viridosporus T7A. Biotechnology Research and Innovation, 3(1), 131-143. https://doi.org/10.1016/J.BIORI.2019.04.002

Oliveira, F., Souza, C. E., Peclat, V. R. O. L., Salgado, J. M., Ribeiro, B. D., Coelho, M. A. Z., Venâncio, A., & Belo, I. (2017). Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 102, 268-277. https://doi.org/10.1016/J.FBP.2017.01.007

Oliveira, M. A. M. L. de, Silva, C. F. de O., Fraga, E. G., & Sousa, L. A. (2021). Logística reversa de celulares na região do Alto Tietê um estudo de caso na cidade de Arujá-SP. Científica Digital. https://doi.org/10.37885/210303926

Pereira, E., Ferreira, M. C., Sampaio, K. A., Grimaldi, R., Meirelles, A. J. de A., & Maximo, G. J. (2019). Physical properties of Amazonian fats and oils and their blends. Food Chemistry, 278, 208-215. https://doi.org/10.1016/J.FOODCHEM.2018.11.016

Pereira Jr., N., Couto, M. A. P. G., & Anna, L. M. M. S. (2008). Biomass of lignocellulosic composition for fuel ethanol production within the context of biorefinery. Amiga Digital UFRJ.

Pessôa, T. S., Lima Ferreira, L. E. de, da Silva, M. P., Pereira Neto, L. M., Nascimento, B. F. do, Fraga, T. J. M., Jaguaribe, E. F., Cavalcanti, J. V., & da Motta Sobrinho, M. A. (2019). Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. Journal of Cleaner Production, 240. https://doi.org/10.1016/j.jclepro.2019.118047

Sarangi, P. K., Nanda, S., & Vo, D. V. N. (2020). Technological advancements in the production and application of biomethanol. In: Nanda, S., N. Vo, DV., & Sarangi, P. (Eds.), Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals (p. 127-139). Springer. https://doi.org/10.1007/978-981-15-1804-1_6

Sato, M. K., de Lima, H. V., Costa, A. N., Rodrigues, S., Pedroso, A. J. S., & de Freitas Maia, C. M. B. (2019). Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 96, 158-167. https://doi.org/10.1016/J.WASMAN.2019.07.022

Serafin, J., Ouzzine, M., Cruz, O. F., Sreńscek-Nazzal, J., Campello Gómez, I., Azar, F. Z., Rey Mafull, C. A., Hotza, D., & Rambo, C. R. (2021). Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Management, 136, 273-282. https://doi.org/10.1016/j.wasman.2021.10.025

Serafin, J., Ouzzine, M., Xing, C., El Ouahabi, H., Kaminska, A., & Srenscek-Nazzal, J. (2022). Activated carbons from the Amazonian biomass andiroba shells applied as a CO2 adsorbent and a cheap semiconductor material. Journal of CO2 Utilization, 62, 102071. https://doi.org/10.1016/J.JCOU.2022.102071

Siqueira, A. D., & Brondizio, E. S. (2011). Local food preference and global markets. Perspectives on açai fruit as terroir and a Geographic Indicator product. Appetite, 56(2), 544. https://doi.org/10.1016/J.APPET.2010.11.261

Sousa, R. S. de, Novais, T. S., Batista, F. O., & Zuñiga, A. D. G. (2020). Análise sensorial de cookie desenvolvidos com farinha da casca de abacaxi (Ananas comosus (L.) Merril). Research, Society and Development, 9(4), e45942816. https://doi.org/10.33448/rsd-v9i4.2816

Souza, L. do S. S., Pereira, A. M., Farias, M. A. dos S., Oliveira, R. L. e., Duvoisin, S., & Quaresma, J. N. N. (2020). Valorization of andiroba (Carapa guianensis aubl.) residues through optimization of alkaline pretreatment to obtain fermentable sugars. BioResources, 15(1), 894-909. https://doi.org/10.15376/biores.15.1.894-909

Thomaz, K. T. C., Queiroz, L. S., Faial, K. C. F., Zamian, J. R., Nascimento, L. A. S., Rocha Filho, G. N., Souza, L. K. C., & Costa, C. E. F. (2023). Removal of Fe and Mn ions from groundwater using activated carbon obtained from waste products of Brazil nut and andiroba cultivation in the Amazon region. Sustainable Materials and Technologies, 38, e00737. https://doi.org/10.1016/j.susmat.2023.e00737

Wallace, T. C., Bailey, R. L., Blumberg, J. B., Burton-Freeman, B., Chen, C. y. O., Crowe-White, K. M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R., Murray, R., Shapses, S. A., & Wang, D. D. (2020). Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 60(13), 2174-2211. https://doi.org/10.1080/10408398.2019.1632258

Wang, P., Zheng, Y., Li, Y., Shen, J., Dan, M., & Wang, D. (2022). Recent advances in biotransformation, extraction and green production of D-mannose. Current Research in Food Science, 5, 49-56. https://doi.org/10.1016/J.CRFS.2021.12.002

Zhang, T., Pan, Z., Qian, C., & Chen, X. (2009). Isolation and purification of d-mannose from palm kernel. Carbohydrate Research, 344(13), 1687-1689. https://doi.org/10.1016/J.CARRES.2009.06.018

Downloads

Published

2025-03-03

How to Cite

HERMINO, V. L. de Q., SILVA, E. P., ABREU, E. R. de, MOTA, D. N., NEVES, S. M., TORRES, V. G. S., FREITAS, F. A. de, & PEREIRA JÚNIOR, N. (2025). Use of agro-industrial waste from the processing of oilseeds and Amazonian fruits. Food Science and Technology, 45. https://doi.org/10.5327/fst.00352

Issue

Section

Review Articles