The Influence of pH fractionation and salt on Bambara protein–gum arabic interaction and insoluble complex formation

Authors

DOI:

https://doi.org/10.5327/fst.00341%20

Keywords:

Bambara groundnuts, gum arabic, interaction, insoluble complex

Abstract

Proteins exhibit remarkable interaction with polysaccharides to form complexes with novel functionality. Nevertheless, the formation of insoluble complexes close to the protein isoelectric point (pI) results in protein–protein interference, low coacervates yield, and limited application in acidified food systems. Hence, pH fractionation with salt was used to extract Bambara groundnut protein to induce a shift in optimum pH (pHopt) of insoluble complexes formed with gum arabic, ultimately improving protein and coacervates yields. Turbidimetric analyses were employed to monitor the interaction between Bambara groundnut protein and gum arabic. Protein isolates from optimised fractionation conditions and insoluble complexes were characterised. The most effective fractionation condition was achieved at pH 2.95, 0.28 M NaCl, producing a substantial pHopt shift to 3.4. This shift was associated with the formation of spherical microparticle complexes and an impressive 70% coacervate yield. Changes in patterns of protein–gum arabic interaction were associated with an increased content of β-sheet, enrichment of legumin subunits, and basic amino acids of the isolate. This approach successfully shifted the formation of insoluble complexes towards a high-acid pH environment, notably away from the pI. Findings from this study create a prospect for future utilisation of pulse grain protein-gum arabic complexes in acidic beverage development. 

Downloads

Download data is not yet available.

References

Amonsou, E. O., Taylor, J. R. N., Beukes, M., & Minnaar, A. (2012). Composition of marama bean protein. Food Chemistry, 130(3), 638-643. https://doi.org/10.1016/j.foodchem.2011.07.097

Archut, A., Klost, M., Drusch, S., & Kastner, H. (2023). Complex coacervation of pea protein and pectin: Contribution of different protein fractions to turbidity. Food Hydrocolloid, 134, 108032. https://doi.org/10.1016/j.foodhyd.2022.108032

Arise, A. K., Amonsou, E. O., & Ijabadeniyi, O. A. (2015). Influence of extraction methods on functional properties of protein concentrates prepared from South African Bambara groundnut landraces. International Journal of Food Science and Technology, 50(5), 1095-1101. https://doi.org/10.1111/ijfs.12746

Baylan, N., & Çehreli, S. (2018). Ionic liquids as bulk liquid membranes on levulinic acid removal: A design study. Journal of Molecular Liquids, 266, 299-308. https://doi.org/10.1016/j.molliq.2018.06.075

Bidlingmeyer, B. A., Cohen, S. A., & Tarvin, T. L. (1984). Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography, 336(1), 93-104. https://doi.org/10.1016/S0378-4347(00)85133-6

Busu, N. M., & Amonsou, E. O. (2019). Fractionation pH of Bambara groundnut (Vigna subterranea) protein impacts the degree of complexation with gum arabic. Food Hydrocolloids, 87, 653-660. https://doi.org/10.1016/j.foodhyd.2018.08.044

Carpentier, J., Conforto, E., Chaigneau, C., Vendeville, J., & Maugard, (2021). Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. Journal of Innovative Food Science and Emerging Technology, 69, 102641. https://doi.org/10.1016/j.ifset.2021.102641

Chen, G., Dong, S., Chen, Y., Gao, Y., Zhang, Z., Li, S., & Chen, Y. (2020). Complex coacervation of zein-chitosan via atmospheric cold plasma treatment: Improvement of encapsulation efficiency and dispersion stability. Food Hydrocolloids, 107, 105943. https://doi.org/10.1016/j.foodhyd.2020.105943

Crespo, M. O. P., & Yusty, M. A. L. (2005). Comparison of supercritical fluid extraction and soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere, 59(10), 1407-1413. https://doi.org/10.1016/j.chemosphere.2004.12.025

Derkach, S. R., Voron’ko, N. G., & Kuchina, Y. A. (2022). Intermolecular interactions in the formation of polysaccharide-gelatin complexes: A spectroscopic study. Polymers, 14(14), 2777. https://doi.org/10.3390/polym14142777

Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19(Part B), 882-892. https://doi.org/10.1016/j.jff.2015.01.037

Feng, S., Guo, Y., Liu, F., Li, Z., Chen, K., Handa, A., & Zhang, Y. (2023). The impacts of complexation and glycated conjugation on the performance of soy protein isolate-gum arabic composites at the o/w interface for emulsion-based delivery systems. Food Hydrocolloids, 135, 108168. https://doi.org/10.1016/j.foodhyd.2022.108168

Guckeisen, T., Hosseinpour, S., & Peukert, W. (2021). Effect of pH and urea on the proteins secondary structure at the water/ air interface and in solution. Journal of Colloid and Interface Science, 590, 38-49. https://doi.org/10.1016/j.jcis.2021.01.015

Gulzar, M., Taylora, R. N., & Minnaara, A. (2017). Influence of extraction pH on the foaming, emulsification, oil-binding and visco-elastic properties of marama protein. Journal of Food Science and Agriculture, 97(14), 4815-4821. https://doi.org/10.1002/jsfa.8351

Hachfi, R. S., Hamon, P., Rousseau, F., Famelart, M. H., & Bouhallab, S. (2023). Ionic strength dependence of the complex coacervation between lactoferrin and β-lactoglobulin. Foods, 12(5), 1040. https://doi.org/10.3390/foods12051040

He, S., Zhao, J., Zhang, Y., Zhu, Y., Li, X., Cao, X., Ye, Y., Li, J., & Sun, H. (2021). Effects of low-pH treatment on the allergenicity reduction of black turtle bean (Phaseolus vulgaris L.) lectin and its mechanism. Journal of Agricultural & Food Chemistry, 69(4), 1379-1390. https://doi.org/10.1021/acs.jafc.0c06524

Jaramillo, D. P., Roberts, R. F., & Coupland, J. N. (2012). Effect of pH on the properties of soy protein–pectin complexes. Food Research International, 44(4), 911-916. https://doi.org/10.1016/j.foodres.2011.01.057

Klassen, D. R., & Nickerson, M. T. (2012). Effect of pH on the formation of electrostatic complexes within admixtures of partially purified pea proteins (legumin and vicilin) and gum arabic polysaccharides. Journal of Food Research International, 46(1), 167-176. https://doi.org/10.1016/j.foodres.2011.10.039

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0

Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F., Deng, Q., & Grimi, N. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15, 100426. https://doi.org/10.1016/j.fochx.2022.100426

Li, H., Wang, T., Hu, Y., Wu, J., & Meeren, P. V. (2022). Designing delivery systems for functional ingredients by protein/ polysaccharide interactions. Trends in Food Science & Technology, 119, 272-287. https://doi.org/10.1016/j.tifs.2021.12.007

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Ozdemir, A., Lin, J. L., Gillig, K. J., Gulfen, M., & Chen, C. H. (2016). Analysis of saccharides by the addition of amino acids. Journal of American Society for Mass Spectrometry, 27(6), 1113-1121. https://doi.org/10.1007/s13361-016-1370-8

Plati, F., Ritzoulis, C., Pavlidou, E., & Paraskevopoulou, A. (2021). Complex coacervate formation between hemp protein isolate and gum arabic: Formulation and characterization. International Journal of Biological Macromolecules, 182, 144-153. https://doi.org/10.1016/j.ijbiomac.2021.04.003

Singh, R., Rathod, G., Meletharayil, G. H., Kapoor, R., Sankarlal, V. M., & Amamcharla, J. K. (2022). Shelf-stable dairy protein beverages—scientific and technological aspects. Journal of Dairy Science, 105(12), 9327-9346. https://doi.org/10.3168/jds.2022-22208

Taheri, A., & Jafar, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277-295. https://doi.org/10.1016/j.cis.2019.04.009

Wang, N., Xing, K., Zhang, W., Jiang, L., Elfalleh, W., Cheng, J., & Yu, D. (2023). Combining multi–spectroscopy analysis and interfacial properties to research the effect of ultrasonic treatment on soybean protein isolate–tannic acid complexes. Food Hydrocolloids, 145, 109136. https://doi.org/10.1016/j.foodhyd.2023.109136

Zhang, Q., Zhou, Y., Yue, W., Qin, W., Dong, H., & Thava Vasanthan, T. (2021). Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology, 109, 169-196. https://doi.org/10.1016/j.tifs.2021.01.026

Downloads

Published

2024-10-03

How to Cite

OJESANMI, A. A., & AMONSOU, E. O. (2024). The Influence of pH fractionation and salt on Bambara protein–gum arabic interaction and insoluble complex formation. Food Science and Technology, 44. https://doi.org/10.5327/fst.00341

Issue

Section

Original Articles