Organic fertilization increases yield and affects the postharvest quality of Nopalea cochenillifera cladodes
DOI:
https://doi.org/10.5327/fst.00320Keywords:
forage palm, manure, palatability, bioactive compoundsAbstract
Organic fertilization can promote greater production of cladodes as well as increase phytomass production and the quality and content of bioactive compounds. Thus, the aim of this study was to evaluate the sources and doses of organic fertilizer on the production and quality of forage palm cladodes. A completely randomized experimental design in a 3 × 3 factorial scheme with five replications was used. Three sources of organic fertilizer (chicken manure, cattle manure, and goat manure) and three concentrations of each source (0, 10, and 20%) were studied. Cladodes fresh mass, pH, soluble solids, titratable acidity, soluble solids/titratable acidity ratio, ascorbic acid, chlorophyll, carotenoids, phenolic compounds, flavonoids, and anthocyanins were evaluated. Palm cladodes fertilized with 20% chicken manure produce the highest biomass, while cladodes fertilized with 10% chicken manure have the highest palatability and content of bioactive compounds. Thus, fertilization with 10% chicken manure is the most promising and economically viable way to increase the production and quality of palm cladodes. The research demonstrated that fertilization with chicken, cattle, and goat manure increases the productivity, nutritional quality, and palatability of the cladodes intended for human consumption, providing a sustainable and healthy alternative for the region.
Downloads
References
Alexandre, R. S., Monteiro Junior, K. R., Chagas, K., Siqueira, A. L., Schimidt, E. R., & Lopes, J. C. (2018). Physical and chemical characterization of sweet passion fruits genotypes in São Mateus, Espírito Santo State, Brazil. Comunicata Scientiae, 9(3), 363-371. https://doi.org/10.14295/cs.v9i3.1811
Andrade-Cetto, A., & Wiedenfeld, H. (2011). Anti-hyperglycemic effect of Opuntia streptacantha Lem. Journal of Ethnopharmacology, 133(2), 940-943. https://doi.org/10.1016/j.jep.2010.11.022
Association of Official Analytical Chemists (AOAC). (1990). Official methods of analysis of the association of agricultural chemists. AOAC.
Cardoso, D. B., Carvalho F. F. R., Medeiros, G., Guim, A., Cabral, A. M., Véras, R. M. L., Santos, K. C., Dantas, L. C. N., & Nascimento, A. G. O. (2019). Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Animal Feed Science Technology, 247, 23-31. https://doi.org/10.1016/j.anifeedsci.2018.10.016
Carreira, V. P., Padró, J., Koch, N. M., Fontanarrosa, P., Alonso, I., & Soto, I. M. (2014). Nutritional composition of Opuntia sulphurea G. Don cladodes. Haseltonia, 2014(19), 38-45. https://doi.org/10.2985/026.019.0106
Corrales-García, J., Peña-Valdivia, C. B., Razo-Martı́nez, Y., & Sánchez-Hernández, M. (2004). Acidity changes and pH-buffering capacity of nopalitos (Opuntia spp.). Postharvest Biology and Technology, 32(2), 169-174. https://doi.org/10.1016/j.postharvbio.2003.11.008
Cunha, J. M., Freitas, M. S. M., Carvalho, A. J. C., Caetano, L. C. S., Vieira, M. E., Peçanha, D. A., Lima, T. C., Jesus, A. C., & Pinto, L. P. (2021). Pineapple yield and fruit quality in response to potassium fertilization. Journal of Plant Nutrition, 44(6), 865-874. https://doi.org/10.1080/01904167.2021.1871755
Dubeaux Júnior, J. C., Araújo Filho, J. T., Santos, M. V., Lira, M. D. A., Santos, D. C., & Pessoa, R. A. (2010). Adubação mineral no crescimento e composição mineral da palma forrageira–Clone IPA-201. Revista Brasileira de Ciências Agrárias, 5(1), 129-135. https://doi.org/10.5039/agraria.v5i1a591
El Kharrassi, Y., Mazri, M.A., Benyahia, H., Benaouda, H., & Nasser, B. (2016). Fruit and juice characteristics of 30 accessions of two cactus pear species (Opuntia ficus indica and Opuntia megacantha) from different regions of Morocco. LWT-Food Science and Technology, 65, 610-617. https://doi.org/10.1016/j.lwt.2015.08.044
Ferreira, E. B., Cavalcanti, P. P., & Nogueira, D. A. (2021). ExpDes: Experimental Designs Package. R package version 1.2.1.
Food and Agriculture Organization (FAO). (2004). Vitamin and mineral requirements in human nutrition. FAO.
Francis, F. J. (1982). Analysis of anthocyanins. Anthocyanins as food colors, 1, 280.
Guerrero, P. C., Majure, L. C., Cornejo-Romero, A., & Hernández-Hernández, T. (2019). Phylogenetic relationships and evolutionary trends in the cactus family. Journal of Heredity, 110(1), 4-21. https://doi.org/10.1093/jhered/esy064
Gülcin, I. (2012). Antioxidant activity of food constituents: an overview. Archives Toxicology, 86, 345-391. https://doi.org/10.1007/s00204-011-0774-2
Haile, K., Mehari, B., Atlabachew, M., & Chandravanshi, B. S. (2016). Phenolic composition and antioxidant activities of cladodes of the two varieties of cactus pear (Opuntia ficus-indica) grown in Ethiopia. Bulletin of the Chemical Society of Ethiopia, 30(3), 347-356. https://doi.org/10.4314/bcse.v30i3.3
Inglese, P. (2018). Ecología del cultivo, manejo y usos del nopal. Food and Agriculture Organization.
Inglese, P., Mondragon, C., Nefzaoui, A., & Saenz, C. (2017). Crop ecology, cultivation and uses of cactus pear. Food and Agriculture Organization. Retrieved from http://www.fao.org/3/a-i7628e.pdf
Iqbal, M. A., Hamid, A., Imtiaz, H., Rizwan, M., Imran, M., Sheikh, U. A. A., & Saira, I. (2020). Cactus pear: a weed of dry-lands for supplementing food security under changing climate. Planta Daninha, 38, e020191761. https://doi.org/10.1590/S0100-83582020380100040
Kahramanoğlu, İ., Usanmaz, S., Okatan, V., & Wan, C. (2020). Preserving postharvest storage quality of fresh-cut cactus pears by using different bio-materials. CABI Agriculture and Bioscience, 1, 1-13. https://doi.org/10.1186/s43170-020-00008-5
Karim, M. R., Felker, P., & Bingham, R. L. (1998). Correlations between cactus pear (Opuntia sp.) cladode nutrient concentrations and fruit yield and quality. Annual of Arid Zone, 37(2), 159-171.
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19-34. https://doi.org/10.1016/j.jfca.2016.03.004
Ladd, J. N., & Amato, M. (1986). The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions. Soil Biology and Biochemistry, 18(4), 417-425. https://doi.org/10.1016/0038-0717(86)90048-9
Lichtenthaler, H. K. (1987). Chlorophylls and caratenoids: pigment photosynthetic biomembranes. In: L. Packer & R. Douce (Eds.). Methods in Enzymology (v. 146, pp. 350-382).
Mabotja, M. B., Gerrano, A. S., Venter, S. L., du Plooy C. P., Kudanga, T., & Amoo, S. O. (2021). Nutritional variability in 42 cultivars of spineless cactus pear cladodes for crop improvement. South African Journal of Botany, 142, 140-148. https://doi.org/10.1016/j.sajb.2021.06.022
Matos, L. V., Donato, S. L. R., Kondo, M. K., Lani, J. L., & Aspiazú, I. (2021). Soil attributes and the quality and yield of ‘Gigante’cactus pear in agroecosystems of the semiarid region of Bahia. Journal of Arid Environments, 185, 104325. https://doi.org/10.1016/j.jaridenv.2020.104325
Medina‐Torres, L., Vernon‐Carter, E. J., Gallegos‐Infante, J. A., Rocha‐Guzman, N. E., Herrera‐Valencia, E. E., Calderas, F., & Jiménez‐Alvarado, R. (2011). Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus‐indica) cladodes after convective drying. Journal of the Science of Food and Agriculture, 91(6), 1001-1005. https://doi.org/10.1002/jsfa.4271
Msaddak, L., Abdelhedi, O., Kridene, A., Rateb, M., Belbahri, L., Ammar, E., Nasri, M., & Zouari, N. (2017). Opuntia ficus-indica cladodes as a functional ingredient: bioactive compounds profile and their effect on antioxidant quality of bread. Lipids in Health and Disease, 16, 32. https://doi.org/10.1186/s12944-016-0397-y
Namvar, A., & Khandan, T. (2015). Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: impact on water relations, cell membrane stability, chlorophyll content and yield. Archives of Agronomy and Soil Science, 61(8), 1137-1149. https://doi.org/10.1080/03650340.2014.982550
Namvar, A., Sharifi, R., Khandan, T., & Moghadam, M. (2013). Organic and inorganic nitrogen fertilization effects on some physiological and agronomical traits of chickpea (Cicer arietinum L.) in irrigated condition. Journal of Central European Agriculture, 14(3), 881-893. https://doi.org/10.5513/JCEA01/14.3.1281
Onofrei, V., Teliban, G. C., Burducea, M., Lobiuc, A., Sandu, C. B., Tocai, M., & Robu, T. (2017). Organic foliar fertilization increases polyphenol content of Calendula officinalis L. Industrial Crops and Products, 109, 509-513. https://doi.org/10.1016/j.indcrop.2017.08.055
Ortega-García, J. G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J. A., Suárez-Rodríguez, R., & Sepúlveda-Jiménez, G. (2015). Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae, 195, 8-16. https://doi.org/10.1016/j.scienta.2015.08.027
Peterson, B. G., & Carl, P. (2020). PerformanceAnalytics: econometric tools for performance and risk analysis. R package version 2.0.4.
R Core Team (2022). R: A language and environment for statistical computing. R Core.
Ribeiro, E. M. O., Silva, N. H., Lima Filho, J. L., Brito, J. Z., & Silva, M. P. C. (2010). Study of carbohydrates present in the cladodes of Opuntia ficus-indica (fodder palm), according to age and season. Food Science and Technology, 30, 933-939. https://doi.org/10.1590/S0101-20612010000400015
Salama, Z. A., El Baz, F. K., Gaafar, A. A., & Zaki, M. F. (2015). Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill.) in responses to organic and bio-organic fertilizers. Journal of the Saudi Society and Agricultural Sciences, 14(1), 91-99. https://doi.org/10.1016/j.jssas.2013.10.004
Saraiva, F. M., Dubeux Júnior, J. C. B., Cunha, M. V., Menezes, R. S. C., Santos, M. V. F., Camelo, D., & Ferraz, I. (2021). Manure source and cropping system affect nutrient uptake by cactus (Nopalea cochenillifera Salm Dyck). Agronomy, 11(8), 1512. https://doi.org/10.3390/agronomy11081512
Silva, J. A., Bonomo, P., Donato, S. L., Pires, A. J., Rosa, R. C., & Donato, P. E. (2012). Composição mineral em cladódios de palma forrageira sob diferentes espaçamentos e adubações química. Revista Brasileira de Ciências Agrárias, 7, 866-875. https://doi.org/10.5039/agraria.v7isa2134
Silva, J. A., Donat, S. L., Donato, P. E., Souza, E. S., Padilha Júnior, M. C., & Junior, S. (2016a). Extraction/export of nutrients in Opuntia ficus-indica under different spacings and chemical fertilizers. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(3), 236-242. https://doi.org/10.1590/1807-1929/agriambi.v20n3p236-242
Silva, M. S., Nóbrega, J. S., Santos, C. C., Costa, F. B., Abreu, D. C., Silva, W. M., Hoshide, A. K., Gomes, F. A. L., Pereira, U. S., Linné, J. A., & Scalon, S. P. (2023a). Organic fertilization with biofertilizer alters the physical and chemical characteristics of young cladodes of Opuntia stricta (Haw.) Haw. Sustainability, 15(4), 3841. https://doi.org/10.3390/su15043841
Silva, N. G. M., Santos, M. V. F., Dubeux Júnior, J. C. B., Cunha, M. V., Lira, M. A., & Ferraz, I. (2016b). Effects of planting density and organic fertilization doses on productive efficiency of cactus pear. Revista Caatinga, 29(4), 976-983. https://doi.org/10.1590/1983-21252016v29n423rc
Silva, R. T., Figueiredo, F. R. A., Lopes, M. F. Q., Bruno, R. L. A., & Andrade, A. P. (2023b). Gas exchange in forage cactus cultivars of genera Opuntia and Nopalea (Cactaceae). Revista Ciência Agronômica, 54, e20218176. https://doi.org/10.5935/1806-6690.20230035
Silva, V. B., Silva, A. P., Dias, B. D. O., Araujo, J. L., Santos, D., & Franco, R. P. (2014). Decomposition and mineralization of N, P and K of cattle manure and poultry litter isolated or mixed. Revista Brasileira de Ciência do Solo, 38(5), 1537-1546. https://doi.org/10.1590/S0100-06832014000500019
Souza, T. C., Santos, M. V. F., Dubeux Júnior, J. C. B., Lira, M. A., Santos, D. C., Lima, L. E. C., & Silva, R. R. (2017). Productivity and nutrient concentration in spineless cactus under different fertilizations and plant densities. Revista Brasileira de Ciências Agrárias, 12(4), 555-560. https://doi.org/10.5039/agraria.v12i4a5473
Tavarini, S., Sgherri, C., Ranieri, A. M., & Angelini, L. G. (2015). Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry, 63(31), 7041-7050. https://doi.org/10.1021/acs.jafc.5b02147
Waterhouse, A. (2017). Folin-Ciocalteu micro method for total phenol in wine. Retrieved from http://waterhouse.ucdavis.edu/phenol/folinmicro.htm
Wit, M., Toit, A., Osthoff, G., & Hugo, A. (2019). Cactus pear antioxidants: A comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). Journal of Food Measurement and Characterization, 13, 2347-2356. https://doi.org/10.1007/s11694-019-00154-z
Zhao, L.Y., Lan, Q. J., Huang, Z. C., Ouyang, L. J., & Zeng, F. H. (2011). Antidiabetic effect of a newly identified component of Opuntia dillenii polysaccharides. Phytomedicine, 18(8-9), 661-668. https://doi.org/10.1016/j.phymed.2011.01.001