Physicochemical, microbiological, and sensory properties of probiotic chocolate bar Dad-13 made from cocoa beans fermented with Lactiplantibacillus plantarum HL-15 during storage
DOI:
https://doi.org/10.5327/fst.0001723Keywords:
characteristic, chocolate, organoleptic, storage timeAbstract
Good-quality chocolate can be produced only from good-quality cocoa beans. The cocoa bean quality can be improved using indigenous Lactiplantibacillus plantarum HL-15 as a starter culture in fermentation. The functionality of chocolate can be enhanced by the addition of probiotic L. plantarum Dad-13. This research aimed to evaluate the physicochemical, microbiological, and sensory characteristics of the probiotic chocolate bar Dad 13 made from fermented cocoa beans L. plantarum HL-15 during storage at different temperatures. The research was conducted in three stages. The first stage was the cocoa bean fermentation with and without L. plantarum HL-15, the second stage was probiotic chocolate bar Dad-13 production, and the third stage was the storage of probiotic chocolate bar Dad-13 at temperatures of 4 and 26°C. This study found that adding L. plantarum HL-15 to the fermentation could produce good-quality cocoa beans, prevent the growth of fungi presented by the pH and Aw of cocoa beans, and form a probiotic chocolate bar during storage. Storage at 4°C maintained the viability of L. plantarum Dad-13 and minimized fat breakdown. The organoleptic attributes of the probiotic chocolate bar Dad-13 during storage at 4 and 26°C were not significantly different (p > 0.05).
Downloads
References
Abballe, C., Gomes, F. M. L., Lopes, B. D., de Oliveira, A. P. F., Berto, M. I., Efraim, P., & Tfouni, S. A. V. (2021). Cocoa beans and derived products: Effect of processing on polycyclic aromatic hydrocarbons levels. Lwt, 135, 110019. https://doi.org/10.1016/j.lwt.2020.110019
Acierno, V., Liu, N., Alewijn, M., Stieger, M., & van Ruth, S. M. (2019). Which cocoa bean traits persist when eating chocolate? Real-time nosespace analysis by PTR-QiToF-MS. Talanta, 195, 676-682. https://doi.org/10.1016/j.talanta.2018.11.100
AOAC (2005). Official Methods of Analysis of AOAC International. In AOAC (Ed.), Official Methods of Analysis of AOAC international (18th ed., pp. 20877-22417). AOAC.
Azarpazhooh, E., Rashidi, H., Sharayei, P., Behmadi, H., & Ramaswamy, H. S. (2021). Effect of flaxseed-mucilage and Stevia on physico-chemical, antioxidant and sensorial properties of formulated cocoa milk. Food Hydrocolloids for Health, 1, 100017. https://doi.org/10.1016/j.fhfh.2021.100017
Black, W. D. (2020). A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLoS One, 15(12), 0238901. https://doi.org/10.1371/journal.pone.0238901
Cielecka-Piontek, J., Dziedziński, M., Szczepaniak, O., Kobus-Cisowska, J., Telichowska, A., & Szymanowska, D. (2020). Survival of commercial probiotic strains and their effect on dark chocolate synbiotic snack with raspberry content during the storage and after simulated digestion. Electronic Journal of Biotechnology, 48, 62-71. https://doi.org/10.1016/j.ejbt.2020.09.005
Cozentino, I., Paula, A., Ribeiro, C., Alonso, J., Grimaldi, R., Luccas, V., Taranto, M., & Cavallini, D. (2022). Development of a potentially functional chocolate spread containing probiotics and structured triglycerides. LWT, 154, 112746. https://doi.org/10.1016/j.lwt.2021.112746
De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. https://doi.org/10.1111/jam.13045
Djaafar, T. F., Elghina, L., Widodo, S., Marwati, T., Utami, T., & Rahayu, E. S. (2019). Study of good handling practices and critical control point determination of dried fermented cocoa bean in gunung kidul regency, yogyakarta. IOP Conference Series: Earth and Environmental Science, 309(1), 012015. https://doi.org/10.1088/1755-1315/309/1/012015
England, P. H. (2020). Detection of water activity in food (Vol. 2). PHE Publications.
Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z. J., González-Ríos, O., Cocolin, L., & Suárez-Quiroz, M. L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301, 41-50. https://doi.org/10.1016/j.ijfoodmicro.2019.05.002
Ho, V. T. T., Fleet, G. H., & Zhao, J. (2018). Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms. International Journal of Food Microbiology, 279, 43-56. https://doi.org/10.1016/j.ijfoodmicro.2018.04.040
Konar, N., Palabiyik, I., Toker, O. S., Polat, D. G., Kelleci, E., Pirouzian, H. R., Akcicek, A., & Sagdic, O. (2018). Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. Journal of Functional Foods, 43, 206-213. https://doi.org/10.1016/j.jff.2018.02.016
Konar, N., Toker, O. S., Oba, S., & Sagdic, O. (2016). Improving functionality of chocolate: A review on probiotic, prebiotic, and/or synbiotic characteristics. Trends in Food Science and Technology, 49, 35-44. https://doi.org/10.1016/j.tifs.2016.01.002
Kouame, L. M., Goualie, B. G., Adom, J. N., Koua, G., Ouattara, H. G., Doue, G., & Niamke, S. L. (2015a). Diversity of Microbial Strains Involved in Cocoa Fermentation from Sud-Comoé (Côte d’Ivoire) Based on Biochemical Properties. European Scientific Journal, 11(18), 69-85.
Kouame, L. M., Koua, G. A. Y., Niamke, J. A., Goualie, B. G., & Niamke, S. L. (2015b). Cocoa Fermentation from Agnéby-Tiassa: Biochemical Study of Microflora. American Journal of BioScience, 3(6), 203-211. https://doi.org/10.11648/j.ajbio.20150306.12
Marwati, T., Djaafar, T. F., Indrasari, S. D., Widodo, S., Cahyaningrum, N., Fajariyah, A., Sulasmi, Susanto, D. E., Yanti, R., & Rahayu, E. S. (2020). Packaging and storage of cocoa beans fermented with Lactobacillus plantarum HL-15 in Agricultural Technology Park Nglanggeran, Yogyakarta. IOP Conference Series: Materials Science and Engineering, 980(1), 012032. https://doi.org/10.1088/1757-899X/980/1/012032
Marwati, T., Tf, D., Ru, H., Matuzzahra, N., Fa, P., & Es, R. (2019). The Effect of Lactobacillus Plantarum Hl-15 in Inhibiting the Growth of Mycotoxin-Producing Fungi during Fermentation of Cocoa Beans. Journal of Food Technology and Food Chemistry, 2(1), 1-8.
Meidistria, T. R., Sembiring, L., Rahayu, E. S., Haedar, N., & Dwyana, Z. (2020). Survival of Lactobacillus plantarum dad 13 in probiotic cheese making. IOP Conference Series: Earth and Environmental Science, 575(1), 012020. https://doi.org/10.1088/1755-1315/575/1/012020
Miguel, M. G. da C. P., Reis, L. V. de C., Efraim, P., Santos, C., Lima, N., & Schwan, R. F. (2017). Cocoa fermentation: Microbial identification by MALDI-TOF MS, and sensory evaluation of produced chocolate. LWT - Food Science and Technology, 77, 362-369. https://doi.org/10.1016/j.lwt.2016.11.076
Mirkovic, M., Seratli, S., Kilcawley, K., Mannion, D., Mirkovic, N., & Radulovic, Z. (2018). The Sensory Quality and Volatile Profile of Dark Chocolate Enriched with Encapsulated Probiotic Lactobacillus plantarum Bacteria. Sensors, 18(8), 2570. https://doi.org/10.3390/s18082570
Montel Mendoza, G., Pasteris, S. E., Otero, M. C., & Fatima Nader-Macías, M. E. (2013). Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. Journal of Applied Microbiology, 116(1), 157-166. https://doi.org/10.1111/jam.12359
Muhammad, D. R. A., Zulfa, F., Purnomo, D., Widiatmoko, C., & Fibri, D. L. N. (2021). Consumer acceptance of chocolate formulated with functional ingredient. IOP Conference Series: Earth and Environmental Science, 637(1), 012081. https://doi.org/10.1088/1755-1315/637/1/012081
Nafingah, R., Kurniasari, J., Cahyani, A., Harmayani, E., & Saputro, A. D. (2019). Investigating the impact of Palm Sap Sugar proportion and fat content on heat stability of Milk Chocolate. IOP Conference Series: Earth and Environmental Science, 355(1), 012043. https://doi.org/10.1088/1755-1315/355/1/012043
Ostrowska-Ligęza, E., Shamilova, M., Wirkowska-Wojdyła, M., & Bryś, J. (2018). Thermogravimetric characterization of dark and milk chocolates at different processing stages Thermogravimetric characterization of dark and milk chocolates at different processing stages. Journal of Thermal Analysis and Calorimetry, 134, 623-631. https://doi.org/10.1007/s10973-018-7091-4
Purwandhani, S. N., Utami, T., Millati, R., & Rahayu, E. S. (2017). Potency of Lactobacillus plantarum Isolated from Dadih to Increase the Folate Levels in Fermented Milk. Agritech, 37(4), 395-401. https://doi.org/10.22146/agritech.10493
Rahayu, E. S., Mariyatun, M., Manurung, N. E. P., Hasan, P. N., Therdtatha, P., Mishima, R., Komalasari, H., Mahfuzah, N. A., Pamungkaningtyas, F. H., Yoga, W. K., Nurfiana, D. A., Liwan, S. Y., Juffrie, M., Nugroho, A. E., & Utami, T. (2021a). Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World Journal of Gastroenterology, 27(1), 107-128. https://doi.org/10.3748/WJG.V27.I1.107
Rahayu, E. S., Mustangin, A., Elvira, I., Mariyatun, M., Pamungkaningtyas, F. H., Hasan, P. N., Utami, T., Cahyanto, M. N., & Juffrie, M. (2021b). Effects of Dietary Intake and Supplementation of Indigenous Probiotic Lactobacillus Plantarum Dad-13 on Body Mass Index, Faecal Short-Chain Fatty Acid, and Gut Microbiota of Undernourished Children in East Lombok, Indonesia. Research Square, 1-17. https://doi.org/10.21203/rs.3.rs-199053/v1
Rahayu, E. S., Rusdan, I. H., Athennia, A., Kamil, R. Z., Pramesi, P. C., Marsono, Y., Utami, T., & Widada, J. (2019). Safety Assessment of Indigenous Probiotic Strain Lactobacillus plantarum Dad-13 Isolated from Dadih Using Sprague Dawley Rats as a Model. American Journal of Pharmacology and Toxicology, 14(1), 38-47. https://doi.org/10.3844/ajptsp.2019.38.47
Rahayu, E. S., Triyadi, R., Khusna, R. N. B., Djaafar, T. F., Utami, T., Marwati, T., & Hatmi, R. U. (2021c). Indigenous Yeast, Lactic Acid Bacteria, and Acetic Acid Bacteria from Cocoa Bean Fermentation in Indonesia Can Inhibit Fungal-Growth-Producing Mycotoxins. Fermentation, 7(3), 192. https://doi.org/10.3390/fermentation7030192
Rahayu, E. S., Yogeswara, A., Mariyatun, Windiarti, L., Utami, T., & Watanabe, K. (2015). Molecular Characteristics of Indigenous Probiotic Strains from Indonesia. International Journal of Probiotics and Prebiotics, 10(4), 1-7.
Rasti, B., Erfanian, A., & Selamat, J. (2017). Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chemistry, 230, 690-696. https://doi.org/10.1016/j.foodchem.2017.03.089
Razavizadeh, B. M., & Tabrizi, P. (2021). Characterization of fortified compound milk chocolate with microcapsulated chia seed oil. Lwt, 150, 111993. https://doi.org/10.1016/j.lwt.2021.111993
Romanens, E., Freimüller Leischtfeld, S., Volland, A., Stevens, M., Krähenmann, U., Isele, D., Fischer, B., Meile, L., & Miescher Schwenninger, S. (2019). Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. International Journal of Food Microbiology, 290, 262-272. https://doi.org/10.1016/j.ijfoodmicro.2018.10.001
Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L., & Dolci, P. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525. https://doi.org/10.1016/j.foodres.2018.10.002
Sharif, M. K., Butt, M. S., Sharif, H. R., & Nasir, M. (2017). Sensory evaluation and consumer acceptability. In Handbook of Food Science and Technology (pp. 361-386). Retrieved from https://www.researchgate.net/profile/Hafiz-Sharif/publication/320466080_Sensory_Evaluation_and_Consumer_Acceptability/links/59e705b94585151e54658b81/Sensory-Evaluation-and-Consumer-Acceptability.pdf
Silva, M. P., Tulini, F. L., Marinho, J. F. U., Mazzocato, M. C., De Martinis, E. C. P., Luccas, V., & Favaro-Trindade, C. S. (2017). Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: Evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. LWT - Food Science and Technology, 75, 640-647. https://doi.org/10.1016/j.lwt.2016.10.025
Succi, M., Tremonte, P., Pannella, G., Tipaldi, L., Cozzolino, A., Coppola, R., & Sorrentino, E. (2017). Survival of commercial probiotic strains in dark chocolate with high cocoa and phenols content during the storage and in a static in vitro digestion model. Journal of Functional Foods, 35, 60-67. https://doi.org/10.1016/j.jff.2017.05.019
Suhartatik, N., Karyantina, M., Mustofa, A., Cahyanto, M. N., Raharjo, S., & Rahayu, E. S. (2013). Stabilitas Ekstrak Antosianin Beras Ketan (Oryza sativa var. glutinosa) Hitam selama Proses Pemanasan dan Penyimpanan. Agritech, 33(4), 384-390. https://doi.org/10.22146/agritech.9533
The National Standardization Agency of Indonesia (2008). Cocoa Bean: Vol. SNI 2323:2. National Standardization Agency of Indonesia.
Utami, T., Cindarbhumi, A., Khuangga, M. C., Rahayu, E. S., Cahyanto, M. N., Nurfiyani, S., & Zulaichah, E. (2020). Preparation of Indigenous Lactic Acid Bacteria Starter Cultures for Large Scale Production of Fermented Milk. Digital Press Life Sciences, 2, 00010. https://doi.org/10.29037/digitalpress.22327
Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. https://doi.org/10.1016/j.ijfoodmicro.2012.05.016
Viesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Rogez, H., Góes-Neto, A., Azevedo, V., Brenig, B., Aburjaile, F., & Soccol, C. R. (2021). Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. International Journal of Food Microbiology, 339, 109015. https://doi.org/10.1016/j.ijfoodmicro.2020.109015
Viesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Vandenberghe, L. P. S., Azevedo, V., Brenig, B., Rogez, H., Góes-Neto, A., & Soccol, C. R. (2020). Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: Isolation, selection and evaluation. Food Research International, 136, 109478. https://doi.org/10.1016/j.foodres.2020.109478
Zhao, H., & James, B. J. (2019). Fat bloom formation on model chocolate stored under steady and cycling temperatures. Journal of Food Engineering, 249, 9-14. https://doi.org/10.1016/j.jfoodeng.2018.12.008
Żyżelewicz, D., Budryn, G., Oracz, J., Antolak, H., Kręgiel, D., & Kaczmarska, M. (2018). The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Research International, 113, 234-244. https://doi.org/10.1016/j.foodres.2018.07.017