Effects of photooxidation exposure time on the modification of cassava starch: a comprehensive study on chemical, functional, structural, and morphological properties
DOI:
https://doi.org/10.5327/fst.00317%20Keywords:
cassava starch, photooxidation, starch propertiesAbstract
Photooxidation is one of the green technologies that can be used to modify starch. This process produces oxidized starch which induces alterations in the starch structure and functional properties. Photooxidation of starch can be influenced by hydrogen peroxide concentration, exposure time, slurry concentration, ultraviolet (UV) intensity, addition of lactic acid, and temperature. This study aims to evaluate the effect of photooxidation exposure time on the chemical, functional, structural, and morphological properties of cassava starch. Cassava starch was modified using a UV catalysator reactor and treated with photooxidation using a combination of hydrogen peroxide and UV irradiation for 15, 30, and 45 min. The result showed that the longer exposure time produced starch with higher amylose, carboxyl contents, solubility, water absorption capacity, oil absorption capacity, and color L*. Moreover, the longer time of the photooxidation process caused a decrease in the pH value, swelling power, and pasting properties. Photooxidation decreased the relative crystallinity values and damaged the granule morphology of the modified cassava starch. These results showed that photooxidation successfully modified cassava starch.
Downloads
References
Banura, S., Thirumdas, R., Kaur, A., Deshmukh, R. R., & Annapure, U. S. (2018). Modification of starch using low pressure radio frequency air plasma. LWT, 89, 719-724. https://doi.org/10.1016/j.lwt.2017.11.056
Benesi, I. R. M., Labuschagne, M. T., Dixon, A. G. O., & Mahungu, N. M. (2004). Stability of native starch quality parameters, starch extraction and root dry matter of cassava genotypes in different environments. Journal of the Science of Food and Agriculture, 84(11), 1381-1388. https://doi.org/10.1002/jsfa.1734
Carvalho, A. P. M. G., Barros, D. R., da Silva, L. S., Sanches, E. A., Pinto, C. da C., de Souza, S. M., Clerici, M. T. P. S., Rodrigues, S., Fernandes, F. A. N., & Campelo, P. H. (2021). Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. International Journal of Biological Macromolecules, 182, 1618-1627. https://doi.org/10.1016/j.ijbiomac.2021.05.165
Chan, H. T., Bhat, R., & Karim, A. A. (2009). Physicochemical and functional properties of ozone-oxidized starch. Journal of Agricultural and Food Chemistry, 57(13), 5965-5970. https://doi.org/10.1021/jf9008789
Chelule, P. K., Mbongwa, H. P., Carries, S., & Gqaleni, N. (2010). Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chemistry, 122(3), 656-661. https://doi.org/10.1016/j.foodchem.2010.03.026
Craig, I. H., White, J. R., & Kin, P. C. (2005). Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer, 46(2), 505-512. https://doi.org/10.1016/j.polymer.2004.11.019
Demiate, I. M., Dupuy, N., Huvenne, J. P., Cereda, M. P., & Wosiacki, G. (2000). Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, 42(2), 149-158. https://doi.org/10.1016/S0144-8617(99)00152-6
Dias, A. R. G., Zavareze, E. D. R., Helbig, E., Moura, F. A. De, Vargas, C. G., & Ciacco, C. F. (2011). Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydrate Polymers, 86(1), 185-191. https://doi.org/10.1016/j.carbpol.2011.04.026
Ekafitri, R., Pranoto, Y., & Herminiati, A. (2021). Chemical properties, functionality, and morphology of taro flour modified by H2O2 oxidation and irradiation of UV light. IOP Conference Series: Earth and Environmental Science, 733(1), 012121. https://doi.org/10.1088/1755-1315/733/1/012121
Falade, K. O., & Okafor, C. A. (2015). Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. Journal of Food Science and Technology, 52(6), 3440-3448. https://doi.org/10.1007/s13197-014-1368-9
Gunorubon, J., & Kekpugile, K. (2012). Modification of cassava starch for industrial uses. International Journal of Engineering and Technology, 2(6), 913-919.
Guo, Z., Gou, Q., Yang, L., Yu, Q. li, & Han, L. (2022). Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry, 370, 130992. https://doi.org/10.1016/j.foodchem.2021.130992
Halal, S. L. M., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247-256. https://doi.org/10.1016/j.foodchem.2014.07.046
Han, B. (2016). Properties of oxidized starch prepared by hydrogen peroxide, chlorine dioxide and sodium hypochlorite. Proceedings of the 2016 International Conference on Biomedical and Biological Engineering, 447-451. https://doi.org/10.2991/bbe-16.2016.69
Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2021). Extraction and characterisation of Cassava starch cultivated in different locations in Sabah, Malaysia. Food Research, 5(3), 44-52. https://doi.org/10.26656/fr.2017.5(3).550
Hornung, P. S., Lazzarotto, S. R. da S., Bellettini, M. B., Lazzarotto, M., Betac, T., Ribania, R. H., & Schnitzlerd, E. (2018). Research article novel oxidized and UV-irradiated Araucaria angustifolia pine seed starch for enhanced functional properties † Polyanna Silveira Hornung. Starch, 71(3-4), 1800140. https://doi.org/10.1002/star.201800140
Hornung, P. S., Oliveira, C. S., Lazzarotto, M., Da Silveira Lazzarotto, S. R., & Schnitzler, E. (2016). Investigation of the photo-oxidation of cassava starch granules: Thermal, rheological and structural behaviour. Journal of Thermal Analysis and Calorimetry, 123(3), 2129-2137. https://doi.org/10.1007/s10973-015-4706-x
Huang, S., Martinez, M. M., & Bohrer, B. M. (2019). The compositional and functional attributes of commercial flours from tropical fruits (breadfruit and banana). Foods, 8(11), 586. https://doi.org/10.3390/foods8110586
Huang, T. T., Zhou, D. N., Jin, Z. Y., Xu, X. M., & Chen, H. Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54(Part A), 202-210. https://doi.org/10.1016/j.foodhyd.2015.10.002
Kaushal, P., Kumar, V., & Sharma, H. K. (2012). Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. Lwt, 48(1), 59-68. https://doi.org/10.1016/j.lwt.2012.02.028
Klein, B., Pinto, V. Z., Vanier, N. L., Zavareze, E. D. R., Colussi, R., Evangelho, J. A., Gutkoski, L. C., & Dias, A. R. G. (2013). Effect of single and dual heat-moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers, 98(2), 1578-1584. https://doi.org/10.1016/j.carbpol.2013.07.036
Kuakpetoon, D., & Wang, Y. J. (2006). Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate Research, 341(11), 1896-1915. https://doi.org/10.1016/j.carres.2006.04.013
Kuakpetoon, D., & Wang, Y. J. (2008). Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydrate Research, 343(1), 90-100. https://doi.org/10.1016/j.carres.2007.10.002
Lawal, O. S. (2004). Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry, 87(2), 205-218. https://doi.org/10.1016/j.foodchem.2003.11.013
Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45-52. https://doi.org/10.1016/j.foodhyd.2013.08.013
Martínez-Bustos, F., Amaya-Llano, S. L., Carbajal-Arteaga, J. A., Yoon, K. C., & Zazueta-Morales, J. D. J. (2007). Physicochemical properties of cassava, potato and jicama starches oxidised with organic acids. Journal of the Science of Food and Agriculture, 87(7), 1207-1214. https://doi.org/10.1002/jsfa.2805
Mejía-Agüero, L. E., Galeno, F., Hern´andez-Hern´andez, O., Juan, M., & Tovar, J. (2012). Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties. Journal of the Science of Food and Agriculture, 92(3), 673-678. https://doi.org/10.1002/jsfa.4629
Muflihati, I., Marseno, D. W., & Pranoto, Y. (2019). Oxidation of oven-dried cassava starch using hydrogen peroxide and UV-C irradiation to improve frying expansion. Indonesian Food and Nutrition Progress, 16(1), 14. https://doi.org/10.22146/ifnp.46176
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. https://doi.org/10.17509/ijost.v4i1.15806
Okekunle, M. O., Adebowale, K. O., Olu-Owolabi, B. I., & Lamprecht, A. (2020). Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus). Scientific African, 8, e00432. https://doi.org/10.1016/j.sciaf.2020.e00432
Perez, C. M., & Juliano, B. O. (1978). Modification of the simplified amylose test for milled rice. Starch, 30(12), 424. https://doi.org/10.1002/star.19780301206
Sánchez-Rivera, M. M., García-Suárez, F. J. L., Velázquez Del Valle, M., Gutierrez-Meraz, F., & Bello-Pérez, L. A. (2005). Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 62(1), 50-56. https://doi.org/10.1016/j.carbpol.2005.07.005
Sandhu, K. S., Kaur, M., Singh, N., & Lim, S. T. (2008). A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. Lwt, 41(6), 1000-1010. https://doi.org/10.1016/j.lwt.2007.07.012
Sangseethong, K., Termvejsayanon, N., & Sriroth, K. (2010). Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches. Carbohydrate Polymers, 82(2), 446-453. https://doi.org/10.1016/j.carbpol.2010.05.003
Santos, T. P. R., Leonel, M., Mischan, M. M., & Cabello, C. (2021). Study and application of photo-modified cassava starch with lactic acid and UV-C irradiation. Lwt, 139, 110504. https://doi.org/10.1016/j.lwt.2020.110504
Satmalawati, E. M., Pranoto, Y., Marseno, D. W., & Marsono, Y. (2020). Oxidation of cassava starch at different dissolved ozone concentration: Effect on functional and structural properties. Food Research, 4(6), 1896-1904. https://doi.org/10.26656/fr.2017.34(6).209
Segura, M. E. M., & Sira, E. E. P. (2003). Characterization of native and modified cassava starches by scanning electron microscopy and X-ray diffraction techniques. Cereal Foods World, 48(2), 78-81.
Subroto, E., Indiarto, R., Marta, H., & Shalihah, S. (2019). Effect of heat-moisture treatment on functional and pasting properties of potato (Solanum tuberosum l. var. granola) starch. Food Research, 3(5), 469-476. https://doi.org/10.26656/fr.2017.3(5).110
Sumardiono, S., Putri, A. W. Z., Jos, B., & Pudjihastuti, I. (2019). Effect of modification processes on cassava starch: physichochemical properties and expansion ability of coated penute. Journal of Physics, 1295(1), 012078. https://doi.org/10.1088/1742-6596/1295/1/012078
Tavares, A. C. K., Zanatta, E., Zavareze, E. da R., Helbig, E., & Dias, A. R. G. (2010). The effects of acid and oxidative modification on the expansion properties of rice flours with varying levels of amylose. LWT - Food Science and Technology, 43(8), 1213-1219. https://doi.org/10.1016/j.lwt.2010.04.007
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551-557.
Tethool, E. F., Jading, A., & Santoso, B. (2012a). Characterization of physicochemical and baking expansion properties of oxidized sago starch using hydrogen peroxide and sodium hypochlorite catalyzed by UV irradiation. Food Science and Quality Management, 10, 1-11.
Tethool, E. F., Jading, A., & Santoso, B. (2012b). Pengaruh konsentrasi hydrogen peroxida dan irradiasi ultraviolet terhadap sifat fisikokimia dan baking expansion pati sagu. Prosiding Insinas, 331-335.
Vanier, N. L., Da Rosa Zavareze, E., Pinto, V. Z., Klein, B., Botelho, F. T., Dias, A. R. G., & Elias, M. C. (2012). Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry, 131(4), 1255-1262. https://doi.org/10.1016/j.foodchem.2011.09.114
Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559. https://doi.org/10.1016/j.foodchem.2016.10.138
Wang, Y. J., & Wang, L. (2003). Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 52(3), 207-217. https://doi.org/10.1016/S0144-8617(02)00304-1
Zaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Yamauchi, H., & Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers, 69(4), 784-791. https://doi.org/10.1016/j.carbpol.2007.02.021
Zavareze, E. D. R., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice-Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat-moisture treated potato starch film. Food Chemistry, 132(1), 344-350. https://doi.org/10.1016/j.foodchem.2011.10.090
Zhang, Y. R., Wang, X. L., Zhao, G. M., & Wang, Y. Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers, 87(4), 2554-2562. https://doi.org/10.1016/j.carbpol.2011.11.036