Phenolic content and lipid quality of nuts of baru fruits submitted to pest management and stored at different temperatures
DOI:
https://doi.org/10.5327/fst.0086922Keywords:
Dipteryx alata Vogel, post-harvest, stability, pestsAbstract
Baru is a fruit produced only once a year which requires adequate planning of seasonal maintenance to maintain the quality of its nut for consumption. This study aimed to evaluate the effect of hydrothermal treatment on pest control and temperature and storage time on baru fruits on the phenolic content and the lipidic quality of the nuts. We stored the fruits at ambient temperature (29°C) and climatized at 18°C. We evaluated them at 0, 60, 120, and 180 days for insect damage, water content, total phenols, tannins, antioxidant activity, lipid profile, acidity, peroxide and iodine indices, and oxidative stability by Rancimat. The integrated management was efficient in pest control, and nuts extracted from fruits preserved the bioactive compounds independently of storage temperature and presented chemical characteristics acceptable for consumption. The fatty acids found in higher proportions in baru nuts were oleic (50%) and linoleic acids (27%) and remained preserved over time. Thus, it promotes the supply of oilseeds to the market with consistency and quality between crops, avoiding unnecessary losses during storage.
Downloads
References
Al-Bachir, M. (2015). Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.). Radiation Physics and Chemistry, 106(1), 56-60. https://doi.org/10.1016/j.radphyschem.2014.06.026
Almeida, S. P., Silva, J. A., & Ribeiro, J. F. (1987). Aproveitamento alimentar de espécies nativas dos Cerrados: araticum, baru, cagaita, e jatobá. Embrapa CPAC.
Alves, A. M., Fernandes, D. C., Borges, J. F., Sousa, A. G., & Naves, M. M. (2016). Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Revista de Nutrição, 29(6), 859-866. https://doi.org/10.1590/1678-98652016000600010
Bento, A. P. N., Cominetti, C., Simões Filho, V., & Naves, M. M. V. (2014). Baru nut improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutrition, Metabolism, Cardiovascular Diseases, 24(2), 1330-1336. https://doi.org/10.1016/j.numecd.2014.07.002
Borges, T. H., Malheiro, R., Souza, A. M., Casal, S., & Pereira, J. A. (2014). O aquecimento por micro-ondas induziu mudanças nas propriedades físico-químicas do baru (Dipteryx alata Vog.) e do óleo bruto de soja. Journal of Food and Nutrition Research, 53(1), 180-188.
Brasil (2005). Ministério da Saúde. Resolução RDC n. 270, 22 de setembro de 2005. Dispõe sobre regulamentação técnica para óleos vegetais, gorduras vegetais e cremes vegetais. Jornal Oficial da República Federativa do Brasil.
Brasil (2009). Ministério da Agricultura e Reforma Agrária. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária.
Brewer, M. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Codex Alimentarius Commission (2003). Codex Standards for olive oils, and olive pomace oils, CODEX STAN 33, 1981. FAO/WHO.
Czeder, L. P., Fernandes, D. C., Freitas, J. B., & Naves, M. M. V. (2012). Baru almonds from different regions of the Brazilian Savanna: Implication of physical and nutritional characteristics. Agricultural Sciences, 3(5), 745-754. https://doi.org/10.4236/as.2012.35090
De Souza, R. G. M., Gomes, A. C., De Castro, I. A., & Mota, J. F. (2018). A baru nut–enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, 55-56, 154-160. https://doi.org/10.1016/j.nut.2018.06.001
Dikariyanto, V., Smith, L., Francis, L., Robertson, M., Kusaslan, E., O'callaghan-Latham, M., Palanche, C., D'annibale, M., Christodoulou, D., Basty, N., Whitcher, B., Shuaib, H., Charles-Edwards, G., Chowienczyk, P. J., Ellis, P. R., Berry, S. E. E., & Hall, W. L. (2020). Snacking on whole nuts for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: the ATTIS study, a randomized controlled trial. American Journal of Clinical Nutrition, 111(6), 1178-1189. https://doi.org/10.1093/ajcn/nqaa100
Di Stefano, V., & Melilli, M. G. (2020). Effect of storage on quality parameters and phenolic content of Italian extra-virgin olive oils. Natural Product Research, 34(1), 78-86. https://doi.org/10.1080/14786419.2019.1587434
Durmaz, G., & Gökmen, V. (2019). Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Research International, 116, 586-591. https://doi.org/10.1016/j.foodres.2018.08.077
Eslampour, E., Asbaghi, O., Hadi, A., Abedi, S., Ghaedi, E., Lazaridi, A., & Miraghajani, M. (2020). The effect of nut intake on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 50, 102399. https://doi.org/10.1016/j.ctim.2020.102399
European Committee for Standardization (2003). Fatty acid methyl esters (fame) -determination of oxidation stability (accelerated oxidation test). Method EN14112. European Committee for Standardization.
Fuster, J. M. B., Cortés, O. S., Bestard, J. P., & Freixedas, F. G. (2017). Fosfatos de origen vegetal, fitatos y calcificaciones patológicas em la enfermedad renal crónica. Revista de La Sociedad Española de Nefrologia, 37(1), 20-28. https://doi.org/10.1016/j.nefro.2016.07.001
Gama, T., Wallace, H. M., Trueman, S. J., & Hosseini-Bai, S. (2018). Quality and shelf life of tree nuts: A review. Scientia Horticulturae, 242, 116-126. https://doi.org/10.1016/j.scienta.2018.07.036
Ghirardello, D., Contessa, C., Valentini, N., Zeppa, G., Rolle, L., Gerbi, V., & Botta, R. (2013). Effect of storage conditions on chemical and physical characteristics of hazelnut (Corylus avellana L.). Postharvest Biology and Technology, 81, 37-43. https://doi.org/10.1016/j.postharvbio.2013.02.014
Guiné, R. P. F., Almeida, C. F. F., Correia, P. M. R., & Mendes, M. (2015). Modelling the Influence of Origin, Packing and Storage on Water Activity, Colour and Texture of Nuts, Hazelnuts and Walnuts Using Artificial Neural Networks. Food and Bioprocess Technology, 8(5), 1113-1125. https://doi.org/10.1007/s11947-015-1474-3
Instituto Adolfo Lutz (2008). Métodos físico-químicos para análise de alimentos (4. ed.). Instituto Adolfo Lutz.
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52, 39. https://doi.org/10.1186/s40659-019-0246-3
Lemos, M. R. B., Siqueira, E. M. A., Arruda, S. A., & Zambiazi, R. C. (2012). The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts. Food Research International, 48(2), 592-597. https://doi.org/10.1016/j.foodres.2012.05.027
Li, M., Chen, X., Deng, J., Ouyang, D., Wang, D., Liang, Y., Chen, Y., & Sun, Y. (2020). Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chemistry, 332, 127429. https://doi.org/10.1016/j.foodchem.2020.127429
Lorini, I., Krzyzanowiski, F. C., França-Neto, J. B., Henning, A. A., & Hening, F. A. (2015). Manejo Integrado de Pragas de Grãos e Sementes Armazenadas. Empresa Brasileira de Pesquisa Agropecuária.
Luo, K. K., Chapman, D. M., Lerno, L. A., Huang, G., & Mitchell, A. E. (2021). Influence of Post‐Harvest Moisture on Roasted Nut Shelf Life and Consumer. Journal of the Science of Food and Agriculture, 10(1), 139-150. https://doi.org/10.1002/jsfa.10624
Maia, E. L., & Rodriguez-Amaya, D. B. (1993). Avaliação de um método simples e econômico para a metilação de ácidos graxos com lipídios de diversas espécies de peixes. Revista do Instituto Adolfo Lutz, 53(1-2), 27-35.
Martínez Nieto, L., Hodaifa, G., & Lozano Peña, J. L. (2010). Changes in phenolic compounds and Rancimat stability of olive oils from varieties of olives at different stages of ripeness. Journal of the Science of Food and Agriculture, 90(14), 2393-2398. https://doi.org/10.1002/jsfa.4097
Martin-Rubio, A. S., Sopelana, P., & Guillén, M. D. (2020). Assessment of Soybean Oil Oxidative Stability from Rapid Analysis of its Minor Component Profile. Molecules, 25(20), 4860. https://doi.org/10.3390/molecules25204860
Maszewska, M., Florowska, A., Dłużewska, E., Wroniak, M., Marciniak-Lukasiak, K., & Żbikowska, A. (2018). Oxidative stability of selected edible oils. Molecules, 23(7), 1746. https://doi.org/10.3390%2Fmolecules23071746
Melo, E. D. A., Maciel, M. I. S., Lima, V. L. A. G. D., & Nascimento, R. J. D. (2008). Capacidade antioxidante de frutas. Revista Brasileira de Ciências Farmacêuticas, 44(2), 193-201. https://doi.org/10.1590/S1516-93322008000200005
Oliveira-Alves, S. C., Pereira, R. S., Pereira, A. B., Ferreira, A., Mecha, E., Silva, A. B., & Bronze, M. R. (2020). Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: Nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, 131, 109026. https://doi.org/10.1016/j.foodres.2020.109026
Pateiro, M., Vargas, F. C., Chincha, A. A., Sant'Ana, A. S.., Strozzi, I., Rocchetti, G., & Lorenzo, J. M. (2018). Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Research International, 114, 55-63. https://doi.org/10.1016/j.foodres.2018.07.047
Pelvan, E., Olgum, E. O., Karadag, A., & Alasalvan, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chemistry, 244, 102-108. https://doi.org/10.1016/j.foodchem.2017.10.011
Prabakaran, M., Lee, K. J., An, Y., Kwon, C., Kim, S., Yang, Y., & Chung, I. M. (2018). Changes in soybean (Glycine max L.) flour fatty-acid content based on storage temperature and duration. Molecules, 23(10), 2713. https://doi.org/10.3390/molecules23102713
Redondo-Cuevas, L., Castellano, G., Torrens, F., & Raikos, V (2018). Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. Journal of Food Composition and Analysis, 66, 221-229. https://doi.org/10.1016/j.jfca.2017.12.027
Reis, V. D. S., de Campos, A. J., Araujo, K. K. S., Melo, P. D. C., & Reis, J. D. L. (2019). Evaluation of uncooked baru nuts stored in different packages. Revista de Ciências Agrárias, 42(2), 539-546.
Rocha, L. S., & Cardoso Santiago, R. D. A. (2009). Use of peel and pulp of baru in the development of bread. Food Science and Technology, 29(4), 820-825. https://doi.org/10.1590/S0101-20612009000400019
Roesler, R., Malta, L. G., Carrasco, L. C., Holanda, R. B., Sousa, C. A. S., & Pastore, G. M. (2007). Atividade antioxidante de frutas do cerrado. Food Science and Technology, 27(1), 53-60. https://doi.org/10.1590/S0101-20612007000100010
Sano, S. M. (2004). Baru: biologia e uso. Embrapa Cerrados.
Santiago, G. D. L., Oliveira, I. G. D., Horst, M. A., Naves, M. M. V., & Silva, M. R. (2018). Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, 38(2), 244-249. https://doi.org/10.1590/1678-457X.36416
Schincaglia, R. M., Cuppari, L., Neri, H. F., Cintra, D. E., Sant’Ana, M. R., & Mota, J. F. (2020). Effects of baru nut oil (Dipteryx alata Vog.) supplementation on body composition, inflammation, oxidative stress, lipid profile, and plasma fatty acids of hemodialysis patients: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 52, 102479. https://doi.org/10.1016/j.ctim.2020.102479
Silva, A. G. D. M., & Fernandes, K. F. (2011). Chemical composition and antinutrients of raw and roasted chicha nuts (Sterculia striata A. St. Hill & Naudin). Revista de Nutrição, 24(2), 305-314. https://doi.org/10.1590/S1415-52732011000200011
Simoes Grilo, F., Srisaard, Y., & Wang, S. C. (2020). Prediction of walnut deterioration using kernel oxidative stability. Foods, 9(9), 1207. https://doi.org/10.3390%2Ffoods9091207
Siqueira, A. P. S., Castro, C. F. D. S., Silveira, E. V., & Lourenço, M. F. D. C. (2016). Chemical quality of Baru nut (Dipteryx alata oil). Ciência Rural, 46(10), 1865-1867. https://doi.org/10.1590/0103-8478cr20150468
Soares Júnior, M. S., Caliari, M., Torres, M. C. L., Vera, R., Teixeira, J. S., & Alves, L. C. (2007). Qualidade de biscoitos formulados com diferentes teores de farinha de amêndoa de baru (Dipteryx alata Vogel). Pesquisas Agropecuárias Tropicais, 37(1), 51-56.
Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68. https://doi.org/10.1002/jsfa.2740100110
Taş, N. G., & Gökmen, V. (2017). Phenolic compounds in natural and roasted nuts and their skins: a brief review. Current Opinion in Food Science, 14, 103-109. https://doi.org/10.1016/j.cofs.2017.03.001
Trematerra, P., & Colacci, M. (2020). Auto-confusion of Ephestia cautella (Walker) infesting dried fruits in a confectionery factory store. Journal of Stored Products Research, 89, 101706. https://doi.org/10.1016/j.jspr.2020.101706
Wang, J., Bravatti, M. A. L., Johnson, E. J., & Raman, G. (2020). Daily nut consumption in cardiovascular disease prevention via LDL-C change in the US population: a cost-effectiveness analysis. BMC Public Health, 20(1), 558. https://doi.org/10.1186/s12889-020-08642-4
Zambrano, M. V., Dutta, B., Mercer, D. G., MacLean, H. L., & Touchie, M. F. (2019). Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends in Food Science & Technology, 88, 484-496. https://doi.org/10.1016/j.tifs.2019.04.006