Stabilization of natural antioxidants from Chillangua (Eryngium foetidum) by encapsulation
DOI:
https://doi.org/10.5327/fst.00254%20Keywords:
biopolymers, encapsulation, morphology, antioxidant capacityAbstract
The Chillangua (Eryngium foetidum) is 4a species of significant scientific interest due to its history and traditional uses throughout the world. Therefore, the focus of this research was on stabilizing the functional and antioxidant components of Chillangua through encapsulation with maltodextrin and Arabic gum. A central composite experimental design was used to evaluate the variables: type of encapsulant (maltodextrin and Arabic gum), encapsulant concentration (3% and 10%), and atomization temperature (130 and 160°C). The results showed that the fresh plant contained 1.34% fat, 17.47% protein, 22.90% fiber, 14.24% ash, and a pH of 6.88. Additionally, concentrations of 3,883.77 μg/g of chlorophyll a, 1,761.72 μg/g of chlorophyll b, 889.19 μg/g of carotenoids, 61.21 mg/g of total polyphenols, 0.02 mg/g of flavonoids, 1.29 mg/g of ascorbic acid, 40 µmol Trolox Eq/g, and 91.60 µmol Trolox/g of antioxidant activity by 2´2´-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-difenil-1-picrilhidrazilo (DPPH), respectively, were identified. When encapsulating Chillangua, it is identified that a reduction occurs in its functional components, as well as its antioxidant activity. The maximum process optimization was achieved at 160°C with 3% maltodextrin and 3% Arabic gum. The irregular morphology of the particles contained C, O, K, Zn, Cl, Al, Ca, and Na.
Downloads
References
Aly, A. A. (2010). Biosíntesis de compuestos fenólicos y vitaminas hidrosolubles en plántulas de Culantro (Eryngium foetidum L.) afectadas por bajas dosis de radiación gamma. Analele Universitatii Din Oradea-Fascicula Biologie, 17(2), 356-361. Retrieved from https://bioresearch.ro/2010-2/356-361%20-%20ALY%20A.A.%20-%20N.C.R.R.T.Cairo.Eg.%20-%20Biosynthesys%20of%20phenolic.pdf
Aragüez, Y., Pino, J. A., Sadai, I., & Roncal, E. (2018). Influencia del contenido de maltodextrina - goma arábiga y la temperatura del aire de entrada en el secado por atomización de jugo concentrado de naranja. Ciencia y Texnología de Alimentos, 28(3), 27-33. Retrieved from https://www.revcitecal.iiia.edu.cu/revista/index.php/RCTA/article/view/34/30
Asociación de Comunidades Analíticas (AOAC). (1980). Official Methods of Analysis of the Association of Official Analytical Chemists International (17th ed.). AOAC.
Asociación de Comunidades Analíticas (AOAC). (2000). Official Methods of Analysis of the Association of Official Analytical Chemists International (17th ed.). AOAC.
Aybastier, O. (2021). Antioxidant and health. Research y Reviews in Science and Mathematics, 2, 81-97. Retrieved from https://www.researchgate.net/publication/357832123
Badui, S. (2006). Química de los alimentos (4a ed.). Pearson.
Bassolino, L., Petroni, K., Polito, A., Marinelli, A., Azzini, E., Ferrari, M., Ficco, D. B. M., Mazzucotelli, E., Tondelli, A., Fricano, A., Paris, R., García-Robles, I., Rausell, C., Real, M. D., Pozzi, C. M., Mandolino, G., Habyarimana, E., & Cattivelli, L. (2022). Does plant breeding for antioxidant-rich foods have an impact on human health? Mdpi, 11(4), 794. https://doi.org/10.3390/antiox11040794
Blair, S., & Madrigal, B. (2005). Plantas antimaláricas de Tumaco: costa pacífica colombiana. Universidad de Antioquia. Retrieved from https://n9.cl/sjuqh
Braga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375, 409-419. https://doi.org/10.1016/j.powtec.2020.08.012
Cachay-Morante, J., Chacpi-Vasquez, M., Castillo-Sebastian, G., & Huamani-Calle, D. (2022). Caracterización fisicoquímica, compuestos bioactivos y capacidad antioxidante del jugo y harina de cladodios secundarios de Opuntia ficus-indica. Agroindustrial Science, 12(2), 191-198. https://doi.org/10.17268/agroind.sci.2022.02.09
Campos, R., Seabra Junior, S., Gonçalves, G., Neves, L., de Gusmão, S., Vianello, F., & Lima, G. (2019). Cambios en compuestos bioactivos en hojas de cilantro espinoso en respuesta a la poda de inflorescencias en diferentes etapas de crecimiento. Scientia Horticulturae, 245, 250-257. https://doi.org/10.1016/j.scienta.2018.10.033
Chen, L., Gnanaraj, C., Arulselvan, P., El-Seedi, H., & Teng, H. (2019). A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends in Food Science and Technology, 85, 149-162. https://doi.org/10.1016/j.tifs.2018.11.026
Dalukdeniya, D., & Rathnayaka, R. (2017). Comparative study on antibacterial and selected antioxidant activities of different Eryngium foetidum extracts. Journal of Applied Life Sciences International, 12(4), 1-7. https://doi.org/10.9734/JALSI/2017/34378
Egoville, M. J., Sullivan, J. F., Kozempel, M. F., & Jones, W. J. (1988). Determinación de ácido ascórbico en patatas procesadas. Revista Americana de Patatas, 65, 91-97.
Emad, A. M., Rasheed, D. M., El-Kased, R. F., & El-Kersh, D. M. (2022). Antioxidant, antimicrobial activities and characterization of Polyphenol-enriched extract of egyptian celery (Apium graveolens L., Apiaceae) aerial parts via UPLC/ESI/TOF-MS. Molecules, 27(3), 698. https://doi.org/10.3390/molecules27030698
Fazal, S. S., & Singla, R. K. (2012). Review on the pharmacognostical & pharmacological characterization of Apium graveolens Linn. Indo Global Journal of Pharmaceutical Sciences, 2(1), 36-42. https://doi.org/10.35652/IGJPS.2012.03
Flores, L., Ruiz, A., & Oscanoa, A. (2021). Protocolo para determinación de humedad en microalgas liofilizadas. Retrieved from https://alicia.concytec.gob.pe/vufind/Record/IMAR_0ddf177028bd519855cdf78d835c5194
Food and Drug Administration (FDA). (2021). CFR - Código de Regulaciones Federales Título 21. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1444
García-Cárdenas, J., Ciro-Velásquez, H., & Largo-Ávila, E. (2015). Encapsulación de un sabor cítrico de mandarina usando tecnología de secado por aspersión y diferentes materiales de cobertura. Revista UDCA Actualidad y Divulgación Científica, 18(1), 251-260. https://doi.org/10.31910/rudca.v18.n1.2015.474
García Mahecha, M., Cortes Rodríguez, M., & Rodríguez Sandoval, E. (2010). Evaluación del secado de perejil aplicando técnicas de deshidratación osmótica como pretratamiento. Revista Facultad Nacional de Agronomía Medellín, 63(2), 5693-5705.
Golubkina, N. A., Kharchenko, V. A., Moldovan, A. I., Koshevarov, A. A., Zamana, S., Nadezhkin, S., Soldatenko, A., Sekara, A., Tallarita, A., & Caruso, G. (2020). Yield, growth, quality, biochemical characteristics and elemental composition of plant parts of celery leafy, stalk and root types grown in the northern hemisphere. Plants, 9(4), 484. https://doi.org/10.3390/plants9040484
Hodoroaba, V. D. (2020). Energy-dispersive X-ray spectroscopy (EDS). In Characterization of Nanoparticles (pp. 397-417). Elsevier.
Jideani, A., Silungwe, H., Takalani, T., Omolola, A., Udeh, H., & Anyasi, T. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1), 41-67. https://doi.org/10.1080/10942912.2020.1866597
Kalušević, A., Lević, S., Čalija, B., Pantić, M., Belović, M., Pavlović, V., Bugarski, B., Milić, J., Žilić, S., & Nedović, V. (2017). Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. Journal of Microencapsulation, 34(5), 475-487. https://doi.org/10.1080/02652048.2017.1354939
Kuck, L., & Noreña, C. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569-576. https://doi.org/10.1016/j.foodchem.2015.08.066
Leitão, D. S. T. C., Siqueira, F. C., Sousa, H., Mercadante, A. Z., Chisté, R. C., & Lopes, A. S. (2020). Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. International Journal of Food Properties, 23(1), 1452-1464. https://doi.org/10.1080/10942912.2020.1811311
Luna-Solano, G., Viloria-Perez, D. G., Villegas-Santiago, J., Salgado-Cervantes, M. A., & Domínguez-Niño, A. (2019). Drying and extraction process of lemongrass (Cymbopogon citratus). Agrociencia, 53(3), 447-464.
Muhamad, I., Jusoh, Y., Nawi, Aziz, A., Padzil, A., & Lian, H. (2018). Advanced Natural Food Colorant Encapsulation Methods: Anthocyanin Plant Pigment. In Natural and Artificial Flavoring Agents and Food Dyes (p. 495-526). Elsevier. https://doi.org/10.1016/b978-0-12-811518-3.00015-6
Ortiz-Romero, N., Ochoa-Martínez, L., González-Herrera, Rutiaga-Quiñones, O. M., & Gallegos-Infante, J. (2021). Avances en las investigaciones sobre la encapsulación mediante gelación iónica: una revisión sistemática. TecnoLógicas, 24(52), 2-19. https://doi.org/10.22430/22565337.1962
Paredes Nureña, A. J., & Castillo Martinez, W. (2015). Evaluación del zumo de aguaymanto (Physialis Peruviana) secado por atomización. Revista Científica Ingeniería: Ciencia, Tecnología e Innovación, 2(1), 73.
Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science and Emerging Technologies, 30, 103-111. https://doi.org/10.1016/j.ifset.2015.06.003
Plati, F., Papi, R., & Paraskevopoulou, A. (2021). Characterization of oregano essential oil (Origanum vulgare L. subsp. hirtum) particles produced by the novel nano spray drying technique. Foods, 10(12), 2923. https://doi.org/10.3390/foods10122923
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.-C., Bailleul, F., & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour Christel. Journal of Ethnopharmacology, 72(1-2), 35-42. https://doi.org/10.1016/s0378-8741(00)00196-3
Quek, S., Chok, N., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. https://doi.org/10.1016/j.cep.2006.06.020
Ramakrishnan, Y., Adzahan, N., Yusof, Y., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406-414. https://doi.org/10.1016/j.powtec.2017.12.018
Raunelli, P., Liviac, D., Alvis, R., Puente, S., Best, I., & Reátegui, O. (2019). Cytoprotective Effect of the Eryngium foetidum “Sacha Culantro” Methanolic Leaf Extract versus Sodium Fluoride Exposed Mice using the Micronucleus Test and the Comet Assay. Pharmacognosy Journal, 11(3), 461-465. https://doi.org/10.5530/pj.2019.11.72
Restrepo, M., Quintero, P., & Fraume, N. (2005). El milagro de las plantas: aplicaciones medicinales y orofaríngeas. San Pablo. Retrieved from https://n9.cl/zxf2p
Roca, E., Felices, E., Ventura, P., & Arroyo, J. (2020). Efecto hepatoprotector y actividad antioxidante del extracto hidroalcohólico del fruto de dos variedades de Opuntia megacantha “Tuna”. Unidad de Investigación e Innovación de Ciencias de la Salud, 23, 252-259. https://doi.org/10.51440/unsch.revistainvestigacion.28.2.2020.416
Rodrigues, T., Silva, M., Gurgel, E., Oliveira, M., & Lucas, F. (2022). Eryngium foetidum L. (Apiaceae): A Literature Review of Traditional Uses, Chemical Composition , and Pharmacological Activities. Hindawi, 2022, 2896895. https://doi.org/10.1155/2022/2896895
Rodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus handbook for carotenoid analysis (Vol. 2, p. 63). International Food Policy Research Institute.
Rojas, J., Trávez, A., Castellano, Zambrano, Z., Iglesias, L., & Pichucho, P. (2022). Microencapsulación del extracto acuoso de cedrón (Aloysia citrodora) mediante secado por aspersión Microencapsulation of the aqueous extract of cedron. UTCiencia, 9(2), 99-112.
Rozek, E. (2007). Contenido de algunas sustancias químicas y aceite esencial en hojas de apio Apium graveolens L. var. secalinum Alef. Herba Polonica, 3(53).
Sandoval-Peraza, V., Cu-Cañetas, T., Peraza-Mercado, G., & Acereto-Escoffié, P. (2017). Introducción en los procesos de encapsulación de moléculas nutracéuticas. En Alimentos Funcionales de hoy (pp. 181-218). OmniaScience.
Sarabandi, K., Jafari, S., Mahoonak, A., & Mohammadi, A. (2019). Application of gum arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59-68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
Sarwar, S., Ayyub, M. A., Rezgui, M., Nisar, S., & Jilani, M. I. (2019). Parsley: A review of habitat, phytochemistry, ethnopharmacology and biological activities. International Journal of Chemical and Biochemical Sciences, 9, 49-55.
Sharma, N., & Singhvi, R. (2018). Consumers perception and Behaviour towards organic food: A systematic review of literature. Journal of Pharmacognosy and Phytochemistry, 7(2), 2152-2155.
Sharma, S., Mulvaney, S., & Rizvi, S. (2003). Ingenieria de Alimentos - Operaciones Unitarias y Practicas de Laboratorio. Limusa Wiley.
Singh, M., Nara, U., Rani, N. & Jaswal, C. (2022). Conocimientos genéticos, genómicos y bioquímicos del apio (Apium graveolens L.) en la era del mejoramiento molecular. Revista de Investigación Aplicada en Plantas Medicinales y Aromáticas, 31, 100420. https://doi.org/10.1016/j.jarmap.2022.100420
Singh, S., Singh, D. R., Banu, S., & Salim, K. M. (2013). Determination of bioactives and antioxidant activity in eryngium foetidum L.: A traditional culinary and medicinal herb. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 83(3), 453-460. https://doi.org/10.1007/s40011-012-0141-y
Tashi Lepcha, T., Upadhyay, S., Manivannan, S., Diki Bhutia, K., Sharma, L., Ramana Muddarsu, V., & Tshering Tashi Lepcha, C. (2018). Proximate and nutritional analysis of Culantro (Eryngium foetidum). Journal of Pharmacognosy and Phytochemistry, 7(1), 3129-3134.
Tolba, K. H., Youssef, S. M., & Abd-Elwahab, E. S. (2008). Physicochemical properties and its application of dill (an-ethum graveolens) and parsley (Petroselinum sativum) and their essential oils. Arab Universities Journal of Agricultural Science, 16(2), 379-387. https://doi.org/10.21608/ajs.2008.14953
Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23-33. https://doi.org/10.1016/j.jbiotec.2016.10.001
Vega, O., & Montaño, D. F. (2020). Biopolímeros, definiciones, caracterización y aplicaciones Resumen. Aportes en Investigación para la Ingeniería, 190-213. Retrieved from https://www.researchgate.net/publication/343268554_Biopolimeros_definiciones_caracterizacion_y_aplicaciones
Vera, J., & Schmalko, M. (2019). Encapsulación de antioxidantes del concentrado de Yerba Mate: Influencia de las condiciones de secado. RECyT, 21(32), 48-55.
Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6, 11-1.1-11-1.8. https://doi.org/10.1002/0471142913.fai0101s06