Physicochemical and sensory characterization of okara obtained by two different processes and the study of its use as breaded food

Authors

  • Maximiliano KNIAZEV Universidad de la República, Facultad de Química, Departamento de Ciencia y Tecnología de Alimentos, Área Tecnología de Alimentos, Montevideo, Uruguay. https://orcid.org/0009-0003-1869-2738
  • Adriana GÁMBARO Universidad de la República, Facultad de Química, Departamento de Ciencia y Tecnología de Alimentos, Área Evaluación Sensorial, Montevideo, Uruguay. https://orcid.org/0000-0003-1915-6649
  • Ignacio VIEITEZ Universidad de la República, Facultad de Química, Departamento de Ciencia y Tecnología de Alimentos, Área Tecnología de Alimentos, Montevideo, Uruguay. https://orcid.org/0000-0003-0320-2970

DOI:

https://doi.org/10.5327/fst.23523

Keywords:

soybean, byproduct, okara, fiber, breading

Abstract

Soybean residue, known as okara, is a byproduct of soymilk production with varying compositions based on the production process. This study explored the characteristics of fresh and dried, disc-milled, and all-metal hammer-milled okara derived from soy crops in Uruguay through different techniques, including physicochemical, microbiological, and sensory analyses. Specifically, dried disc-milled okara was used in making breaded tofu steak, and the sensory traits and oil absorption of the fried product were examined when bread crumbs were substituted with okara in proportions of 0, 25, 50, 75, and 100%. The production process affected moisture, protein, fiber, and oxidative rancidity. Dried samples showed differences in smell, crispness, and particle size, while the drying process reduced microbial load and total polyphenols but enhanced lightness, redness, and yellowness. All samples exhibited a similar fatty acid profile, mainly C18:2. Increasing okara content in breading enhanced the color and smell of fried steaks. Interestingly, there was no significant difference in fat content between the 0 and 100% okara substitutions. This study concludes that dried okara, rich in fiber, protein, and essential fatty acids, presents potential as a functional food for human consumption. It also serves as a sustainable and nutritious breading substitute, offering an alternative to conventional ingredients.

Downloads

Download data is not yet available.

References

American Oil Chemists Society (AOCS). (2017). Official methods and recommended practices of the AOCS (7th ed., v. 1). AOCS.

Arfaoui, L. (2021). Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules, 26(10), 2959. https://doi.org/10.3390/molecules26102959

Bragagnolo, F. S., Funari, C. S., Ibáñez, E., & Cifuentes, A. (2021). Metabolomics as a tool to study underused soy parts: In search of bioactive compounds. Foods, 10(6), 1308. https://doi.org/10.3390/foods10061308

Dieffenbacher, A., & Pocklington, W. D. (1992). Standard Methods for the Analysis of Oils, Fats and Derivatives. In Canada. Composition of the commission (7th ed., v. 1). Blackwell Scientific Publications.

Du, Z., & Bramlage, W. J. (1992). Modified Thiobarbituric Acid Assay for Measuring Lipid Oxidation in Sugar-Rich Plant Tissue Extracts. International Journal fo Agriculture and Food Chemistry, 40(9), 1566-1570. https://doi.org/10.1021/jf00021a018

Gardner, W. H. (1986). Water Content. In A. Klute, Ed., Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods (p. 493-544). American Society of Agronomy, Inc. Soil Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.1.2ed.c21

Grieshop, C. M., & Fahey, G. C. (2001). Comparison of quality characteristics of soybeans from Brazil, China, and the United States. Journal of Agricultural and Food Chemistry, 49(5), 2669-2673. https://doi.org/10.1021/jf0014009

Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420-426. https://doi.org/10.1016/0003-2697(78)90046-5

Ibidapo, O., Henshaw, F., Shittu, T., & Afolabi, W. (2019). Bioactive components of malted millet (Pennisetum glaucum), Soy Residue “okara” and wheat flour and their antioxidant properties. International Journal of Food Properties, 22(1), 1886-1898. https://doi.org/10.1080/10942912.2019.1689998

International, A., & Latimer, G. W. (2012). Official Methods of Analysis of AOAC International (v. 1). AOAC International. Retrieved from https://books.google.com.uy/books?id=kPe4NAEACAAJ

Jayasingh, P., & Cornforth, D. P. (2004). Comparison of antioxidant effects of milk mineral, butylated hydroxytoluene and sodium tripolyphosphate in raw and cooked ground pork. Meat Science, 66(1), 83-89. https://doi.org/10.1016/S0309-1740(03)00018-4

Kamble, D. B., & Rani, S. (2020). Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): A review. Legume Science, 2(1), e32. https://doi.org/10.1002/leg3.32

Kohn, H. I., & Liversedge, M. (1944). On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. Journal of Pharmacology and Experimental Therapeutics, 82(3), 292-300.

Li, B., Qiao, M., & Lu, F. (2012). Composition, Nutrition, and Utilization of Okara (Soybean Residue). Food Reviews International, 28(3), 231-252. https://doi.org/10.1080/87559129.2011.595023

Moragas, M., Valcárcel, S., & Chirapozu, A. (2019). Recopilación de normas microbiológicas de los alimentos y asimilados de la Unión Europea. Retrieved from http://www.analisisavanzados.com/modules/mod_tecdata/manuales/Normas%20microbiologicas%20de%20los%20alimentos%20Enero%202019.pdf

Nishinari, K., Fang, Y., Guo, S., & Phillips, G. O. (2014). Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39, 301-318. https://doi.org/10.1016/j.foodhyd.2014.01.013

Nishinari, K., Fang, Y., Nagano, T., Guo, S., & Wang, R. (2018). Soy as a food ingredient. In Proteins in Food Processing (pp. 149-186). Elsevier. https://doi.org/10.1016/b978-0-08-100722-8.00007-3

Noguchi, A. (1987). Method for the preparation of textured soybean draff (Patent No. 4642241). Retrieved from https://patents.google.com/patent/US4642241A/en

O’Toole, D. K. (1999). Characteristics and use of okara, the soybean residue from soy milk production - A review. In Journal of Agricultural and Food Chemistry, 47(2), 363-371. https://doi.org/10.1021/jf980754l

Redondo-Cuenca, A., Villanueva-Suárez, M. J., & Mateos-Aparicio, I. (2008). Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chemistry, 108(3), 1099-1105. https://doi.org/10.1016/j.foodchem.2007.11.061

Salfinger, Y., & Tortorello, M. L. (Eds.). (2015). Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association. https://doi.org/10.2105/mbef.0222

Sengupta, S., Chakraborty, M., Bhowal, J., & Bhattacharya, D. K. (2012). Study on the effects of drying process on the composition and quality of wet okara. International Journal of Science, Environment and Technology, 1(4), 319-330. Retrieved from https://www.researchgate.net/publication/322951493

Shurtleff, W., & Aoyagi, A. (2000). Tofu & Soymilk Production: A Craft and Technical Manual. Soyfoods Center. Retrieved from https://books.google.mn/books?id=sYUq27wYcKMC

Singh, P., & Krishnaswamy, K. (2022). Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends in Food Science & Technology, 128, 331-344. https://doi.org/10.1016/j.tifs.2022.08.015

Slinkard, K., & Singleton, V. L. (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture, 28, 49-55. https://doi.org/10.5344/ajev.1977.28.1.49

Terzic, D., Popovic, V., Tatić, M., Vasileva, V., Rajicic, V., Ugrenović, V., popović, S., & Avdić, P. (2018). Soybean area, yield and production in world.

Thangaraj, P. (2016). Proximate composition analysis. In K. D. Rainsford (ed.), Progress in Drug Research (v. 71, p. 21-31). Birkhauser Verlag AG. https://doi.org/10.1007/978-3-319-26811-8_5

United States Department of Agriculture (USDA) (2023). World Agricultural Production. Circular Series WAP 1-23. USDA. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/production.pdf

Uruguay (1994). Reglamento Bromatológico Nacional Decreto 315/994 de fecha 05/07/1994: anotado y concordado con apéndice normativo Febrero 2020 (IMPO, Ed.; 7th ed., v. 1).

Velasco, J., Dobarganes, C., & Márquez-Ruiz, G. (2010). Oxidative rancidity in foods and food quality. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 3–32). Elsevier Inc. https://doi.org/10.1533/9781845699260.1.3

Voss, G. B., Rodríguez-Alcalá, L. M., Valente, L. M. P., & Pintado, M. M. (2018). Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara). Journal of Food Measurement and Characterization, 12(3), 1981-1996. https://doi.org/10.1007/s11694-018-9813-5

Downloads

Published

2023-11-15

How to Cite

KNIAZEV, M., GÁMBARO, A., & VIEITEZ, I. (2023). Physicochemical and sensory characterization of okara obtained by two different processes and the study of its use as breaded food. Food Science and Technology, 43. https://doi.org/10.5327/fst.23523

Issue

Section

Original Articles