Evaluation of natural extracts’ antioxidant capacity for controlling fresh sausage oxidation
DOI:
https://doi.org/10.5327/fst.124722Keywords:
rosemary, grape seeds, tocopherols, meat products, oxidative stabilityAbstract
Lipid oxidation impacts the quality and shelf life of meat products. The use of natural antioxidants is an alternative to delay their oxidative deterioration. This study aimed to determine the antioxidant activity of natural extracts and evaluate the viability of replacing 2,3-tert-butyl-4-hydroxyanisole (BHA) in fresh sausages. Both tocopherols and grape seed extract showed similar antioxidant activity to BHA through the 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical (DPPH) and ferric reducing antioxidant power (FRAP) methods. The effectiveness of these antioxidants applied to fresh sausage was evaluated during 15 days of storage at 4.0ºC under light incidence. The results indicated a pro-oxidant effect of grape seed extract (with 6.74% acidity and 2.74 mg MDA kg sample-1 thiobarbituric acid reactive substances (TBARS)) and showed the viability of replacing BHA with tocopherols. Tocopherols had a lower peroxide value (3.07 mE O2 kg-1) than the control (11.40 mE O2 kg-1), with no difference in TBARS or acidity content compared to BHA, and the lowest total mass loss (18.22%).
Downloads
References
Amaral, A. B., Solva, M. V., & Lannes, S. C. D. S. (2018). Lipid oxidation in meat: Mechanisms and protective factors - a review. Food Science and Technology, 38(Suppl. 1), 1-15. https://doi.org/10.1590/fst.32518
AOAC (2019). Fat (Crude) in Meat and Meat Products Solvent Extraction (submersion) Method. Meat and Meat Product. Official Method 991.36, 21 st Edit. AOAC.
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Bertolin, T. E., Freitas Margarites, A. C., Giacomelli, B., Fruetti, A., Horst, C., & Freitas Teixeira, D. M. (2011). Ficocianina, tocoferol e ácido ascórbico na prevenção da oxidação lipídica em charque. Brazilian Journal of Food Technology, 14(4), 301-307. https://doi.org/10.4260/BJFT2011140400036
Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. LWT - Food Science and Technology, 30(6), 609-615. https://doi.org/10.1006/fstl.1997.0240
Boroski, M., Giroux, H. J., Sabik, H., Petit, H. V., Visentainer, J. V., Matumoto-Pintro, P. T., & Britten, M. (2012). Use of oregano extract and oregano essential oil as antioxidants in functional dairy beverage formulations. LWT - Food Science and Technology, 47(1), 167-174. https://doi.org/10.1016/j.lwt.2011.12.018
Bragagnolo, N., Danielsen, B., & Skibsted, L. H. (2005). Effect of rosemary on lipid oxidation in pressure-processed, minced chicken breast during refrigerated storage and subsequent heat treatment. European Food Research and Technology, 221(5), 610-615. https://doi.org/10.1007/s00217-005-0013-2
Brasil (2000). Ministério da Agricultura e do Abastecimento. Instrução Normativa nº 4, de 31 de março de 2000. Regulamento Técnico de Identidade e Qualidade de Linguiça. Diário Geral da União, 1-5.
Carvalho, M. T. (2020). Estabilidade oxidativa de óleo de soja suplementado com extrato de uva bordô. Universidade Tecnológica Federal do Paraná.
Casarotto, J. (2013). Uso de antioxidantes naturais na preservação do estado oxidativo de salsichas [master’s dissertation]. Universidade Federal de Santa Maria. Retrieved from http://jararaca.ufsm.br/websites/ppgcta/download/2013/Casarot.pdf
Cava, G. C. (2007). Efeito da adição de extrato de alecrim e alho em pó nos parâmetros de cor e oxidação lipídica de produto cárneo emulsionado à base de frango [master’s dissertation]. Universidade Estadual de Campinas.
Chen, J., Wang, Y., Lang, X., Ren, X., & Fan, S. (2017). Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresource Technology, 243, 37-46. https://doi.org/10.1016/j.biortech.2017.06.033
Cheng, J. H. (2016). Lipid Oxidation in Meat. Journal of Nutrition & Food Sciences, 6, 3. https://doi.org/10.4172/2155-9600.1000494
Dalposso, P. V. (2018). Caracterização química e potencial antioxidante de produtos e subprodutos de uva [master’s dissertation]. Programa de Pós-Graduação em Processos Químicos e Biotecnológicos da Universidade Tecnológica Federal do Paraná.
Dalposso, P. V., Aguiar, C. M., Torquato, A. S., Tiuman, T. S., Martin, C. A., Zara, R. F., & Cottica, S. M. (2021). Optimization of antioxidant extraction and characterization of oil obtained by pressing cold from Vitis labrusca seeds. Food Science and Technology, 42, e47420. https://doi.org/10.1590/fst.47420
Damodaran, S., Parkin, K. L., & Fennema, O. R. (2010). Química de alimentos de Fennema (4ª ed.). Artmed.
Del Ré, P. V., & Jorge, N. (2012). Especiarias como antioxidantes naturais: Aplicações em alimentos e implicação na saúde. Revista Brasileira de Plantas Medicinais, 14(2), 389-399. https://doi.org/10.1590/S1516-05722012000200021
Erickson, M. C. (2002). Lipid Oxidation of Muscle Foods. In D. B. Akoh & C. C. Min (Eds.), Food Lipids: Chemistry, Nutrition, and Biotechnology (2ª ed., pp. 899–939). Marcel Dekker. https://doi.org/10.1201/9781315151854
Estévez, M. (2021). Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Science, 181, 108610. https://doi.org/10.1016/j.meatsci.2021.108610
Feiner, G. (2006). Meat products handbook: practical science and technology. Woodhead.
Fernández-López, J., Zhi, N., Aleson-Carbonell, L., Pérez-Alvarez, J. A., & Kuri, V. (2005). Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Science, 69(3), 371-380. https://doi.org/10.1016/j.meatsci.2004.08.004
Font-i-Furnols, M., & Guerrero, L. (2014). Consumer preference, behavior and perception about meat and meat products: An overview. Meat Science, 98(3), 361-371. https://doi.org/10.1016/j.meatsci.2014.06.025
Food Ingredients Brasil (FIB) (2014). Os tipos e os efeitos da rancidez oxidativa. Food Ingredients Brasil, (29), 38-45. Retrieved from https://revista-fi.com/upload_arquivos/201606/2016060396904001464897555.pdf
Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48(8), 3597-3604. https://doi.org/10.1021/jf000220w
Gennaro, L., Bocca, A. P., Modesti, D., Masella, R., & Coni, E. (1998). Effect of Biophenols on Olive Oil Stability Evaluated by Thermogravimetric Analysis. Journal of Agriculture and Food Chemistry, 46(11), 4465-4469. https://doi.org/10.1021/jf980562q
Instituto Adolfo Lutz (2008). Métodos físico-químicos para análise de alimentos (4ª ed.). Instituto Adolfo Lutz.
ISO (1997). Meat and Meat Products - Determination of moisture content (Reference method). International Standard - Method ISO 1442, 2 ed. Retrieved from https://standards.iteh.ai/catalog/standards/sist/11594d7b-fd5c-45d7-816b- 8e35f1df4d95/iso-4832-1991
ISO (2009). Food and feed products: General guidelines for the determination of nitrogen by the Kjeldahl method (2ª ed.). International Standard - Method ISO 1871.
Kaipers, K. F. C. (2017). Efeito do extrato de alecrim (Rosmarinus officinalis) como antioxidante em linguiça colonial.
Kanner, J. (1994). Oxidative processes in meat and meat products: Quality implications. Meat Science, 36(1-2), 169-189. https://doi.org/10.1016/0309-1740(94)90040-X
Lazzarotto, M., Ruiz, H. Z., Lazzarotto, S. R. S., Schnitzler, E., Moraes, M. L. T., Cambuim, J., Santos, W., & Aguiar, A. V. (2014). Use of thermogravimetry analysis to quantify total volatile fraction in pine resin Marcelo. Congresso Brasileiro de Análise Térmica e Calorimetria.
Liu, F., Dai, R., Zhu, J., & Li, X. (2010). Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and α-tocopherol. Journal of Food Engineering, 98(2), 170-177. https://doi.org/10.1016/j.jfoodeng.2009.12.023
Marinho, R. B. (2012). Estudo da estabilidade termo-oxidativa de biodiesel por rancimat, petrooxy e termogravimetria. Universidade Federal do Espírito Santo.
Martínez, L., Castillo, J., Ros, G., & Nieto, G. (2019). Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties. Antioxidants, 8(4), 86. https://doi.org/10.3390/antiox8040086
Oliveira, R. R., Lage, M. E., Neto, O. J. S., & Sales, M. C. (2012). Antioxidantes naturais em produtos cárneos. PUBVET, 6(10), 32.
Osawa, C. C., Felício, P. E., & Gonçalves, L. A. G. (2005). Teste de TBA aplicado a carnes e derivados: métodos tradicionais, modificados e alternativos. Química Nova, 28(4), 655-663. https://doi.org/10.1590/s0100-40422005000400019
Palade, L. M., & Chedea, V. S. (2016). Antioxidant/pro-oxidant action of polyphenols from grape seeds. In J. M. Lorenzo Rodríguez & D. F. Ruiz (Ed.), Grape Seeds: Nutrient Content, Antioxidant Properties and Health Benefits (Issue 1, p. 262). Nova Science.
Pereira, D., Pinheiro, R. S., Heldt, L. F. S., Moura, C., Bianchin, M., Almeida, J. F., Reis, A. S., Ribeiro, I. S., Haminiuk, C. W. I., & Carpes, S. T. (2017). Rosemary as natural antioxidant to prevent oxidation in chicken burgers. Food Science and Technology, 37(Suppl. 1), 17-23. https://doi.org/10.1590/1678-457X.31816
Pires, M. A. (2014). Avaliação da capacidade antioxidante de extratos comerciais de alecrim e chá verde e sua influência na estabilidade de hambúrguer de frango durante armazenamento congelado. Universidade de São Paulo.
Raharjo, S., Sofos, J. N., & Schmidt, G. R. (1992). Improved Speed, Specificity, and Limit of Determination of an Aqueous Acid Extraction Thiobarbituric Acid-C18 Method for Measuring Lipid Peroxidation in Beef. LWT - Food Science and Technology, 40(11), 2182-2185. https://doi.org/10.1021/jf00023a027
Resurreccion, A. V. A., & Reynolds, A. E. (1990). Evaluation of Natural Antioxidants in Frankfurters Containing Chicken and Pork. Journal of Food Science, 55(3), 629-631. https://doi.org/10.1111/j.1365-2621.1990.tb05193.x
Saini, A., Pandey, A., Sharma, S., Suradkar, U. S., Yellamelli, R., Meena, A. P., Raman, R., & Asman, S. (2020). Assessment of antioxidant activity of rosemary (Rosmarinus officinalis) and Betal (Piper betel) leaves extract combination. The Pharma Innovation, 9(5), 377-380.
Schaich, K. M. (2017). Oxidation and Antioxidants. In C. C. Akoh (Ed.), Food Lipids: Chemistry, Nutrition and Biotechnology (4ª ed.). Taylor & Francis Group.
Shirahigue, L. D., Plata-Oviedo, M., Alencar, S. M., Bismara Regitano d’Arce, M. A., Ferreira de Souza Vieira, T. M., Cadorin Oldoni, T. L., & Contreras-Castillo, C. J. (2010). Wine industry residue as antioxidant in cooked chicken meat. International Journal of Food Science and Technology, 45(5), 863-870. https://doi.org/10.1111/j.1365-2621.2010.02201.x
Singh, P. K., Ahlawat, S. S., Sharma, D. P., Jairath, G., & Pathera, A. (2018). Effect of grape seed extract on storage stability of buffalo veal slices at refrigeration temperature (4±1°C). Journal of Food Safety, 38(5), e12500. https://doi.org/10.1111/jfs.12500
Singleton, V. L., & Rossi Jr., J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158. Retrieved from http://www.ajevonline.org/cgi/content/abstract/16/3/144
Wang, B., Pace, R. D., Dessai, A. P., Bovell-Benjamin, A., & Phillips, B. (2002). Modified extraction method for determining 2-thiobarbituric acid values in meat with increased specificity and simplicity. Journal of Food Science, 67(8), 2833-2836. https://doi.org/10.1111/j.1365-2621.2002.tb08824.x
Yi, C., Shi, J., Kramer, J., Xue, S., Jiang, Y., Zhang, M., Ma, Y., & Pohorly, J. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114(2), 570-576. https://doi.org/10.1016/j.foodchem.2008.09.103