Association between coa gene and enterotoxin gene in S. aureus from dairy cattle in Brazil
DOI:
https://doi.org/10.5327/fst.16222Keywords:
mastitis, toxins, resistance, pulsed-field gel electrophoresis, dairyAbstract
Staphylococcus aureus is an important agent in bovine mastitis, and some specific virulence factors may be implicated in this disease. Therefore, this study aimed to investigate the importance of the presence of coagulase, superantigens, genotypic and phenotypic resistance, and pulsotypes in 65 S. aureus isolates from bovine clinical and subclinical mastitis in the Southeast of Brazil. A high correlation was observed between the genes coa and see, as well as between the sei and the see and seh. High resistance rates were observed for penicillin (95.4%), tetracycline (89.2%), cefoxitin (86.1%), oxacillin (84.6%), erythromycin (84.6%), clindamycin (84.6%), chloramphenicol (81.5%), ceftriaxone (80.0%), and ampicillin (80.0%). Analysis of antimicrobial resistance profiles showed that 89.2% of isolates were multi-drug-resistant. No mecA-positive S. aureus isolates were detected. It was observed that seven isolates were resistant to all the β-lactam tested while being susceptible to cefoxitin, which could be indicative of borderline methicillin resistance in S. aureus. High genetic diversity with no specific virulence profile being predominant was observed. Thus, this study observed a high correlation between the coa and enterotoxins genes, and demonstrates that there is no predominant pulsotype causing intramammary infection and that there is a high rate of antibiotic resistance in S. aureus isolates from dairy farms in the southeast regions of Brazil.
Downloads
References
Ameen, F., Reda, S. A., El-Shatoury, S. A., Riad, E. M., Enany, M. E., & Alarfaj, A. A. (2019). Prevalence of antibiotic resistant mastitis pathogens in dairy cows in Egypt and potential biological control agents produced from plant endophytic actinobacteria. Saudi Journal of Biological Sciences, 26(7), 1492-1498. https://doi.org/10.1016/j.sjbs.2019.09.008
Baba, T., Bae, T., Schneewind, O., Takeuchi, F., & Hiramatsu, K. (2008). Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: Polymorphism and evolution of two major pathogenicity islands. Journal of Bacteriology, 190(1), 300-310. https://doi.org/10.1128/JB.01000-07
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
Clinical and Laboratory Standards Institute (CLSI) (2018). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals (2nd ed.). CLSI.
Dan, M., Yehui, W., Qingling, M., Jun, Q., Xingxing, Z., Shuai, M., Kuojun, C., Jinsheng, Z., Zibing, C., Zaichao, Z., & Xuepeng, C. (2019). Antimicrobial resistance, virulence gene profile and molecular typing of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, northwest China. Journal of Global Antimicrobial Resistance, 16, 98-104. https://doi.org/10.1016/j.jgar.2018.08.024
De Almeida, C. C., Pizauro, L. J. L., Soltes, G. A., Slavic, D., De Ávila, F. A., Pizauro, J. M., & MacInnes, J. I. (2018). Some coagulase negative Staphylococcus spp. isolated from buffalo can be misidentified as Staphylococcus aureus by phenotypic and Sa442 PCR methods. BMC Research Notes, 11(1), 346. https://doi.org/10.1186/s13104-018-3449-8
Duran, N., Ozer, B., Duran, G. G., Onlen, Y., & Demir, C. (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian Journal of Medical Research, 135(3), 389-396.
Fang, R., Cui, J., Cui, T., Guo, H., Ono, H. K., Park, C. H., Okamura, M., Nakane, A., & Hu, D. L. (2019). Staphylococcal enterotoxin C is an important virulence factor for mastitis. Toxins, 11(3), 141. https://doi.org/10.3390/toxins11030141
Freitas, C. H., Mendes, J. F., Villarreal, P. V., Santos, P. R., Gonçalves, C. L., Gonzales, H. L., & Nascente, P. S. (2018). Identification and antimicrobial suceptibility profile of bacteria causing bovine mastitis from dairy farms in Pelotas, Rio Grande do Sul. Brazilian Journal of Biology, 78(4), 661-666. https://doi.org/10.1590/1519-6984.170727
Fursova, K. K., Shchannikova, M. P., Loskutova, I. V., Shepelyakovskaya, A. O., Laman, A. G., Boutanaev, A. M., Sokolov, S. L., Artem’eva, O. A., Nikanova, D. A., Zinovieva, N. A., & Brovko, F. A. (2018). Exotoxin diversity of Staphylococcus aureus isolated from milk of cows with subclinical mastitis in Central Russia. Journal of Dairy Science, 101(5), 4325-4331. https://doi.org/10.3168/jds.2017-14074
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontoligia Electronica, 4(1), 1-9.
Heikkilä, A. M., Nousiainen, J. I., & Pyörälä, S. (2012). Costs of clinical mastitis with special reference to premature culling. Journal of Dairy Science, 95(1), 139-150. https://doi.org/10.3168/jds.2011-4321
Hryniewicz, M. M., & Garbacz, K. (2017). Borderline oxacillin-resistant staphylococcus aureus (BORSA) - a more common problem than expected? Journal of Medical Microbiology, 66(10), 1367-1373. https://doi.org/10.1099/jmm.0.000585
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55
Javid, F., Taku, A., Bhat, M. A., Badroo, G. A., Mudasir, M., & Sofi, T. A. (2018). Molecular typing of Staphylococcus aureus based on coagulase gene. Veterinary World, 11(4), 423-430. https://doi.org/10.14202/vetworld.2018.423-430
Käppeli, N., Morach, M., Corti, S., Eicher, C., Stephan, R., & Johler, S. (2019). Staphylococcus aureus related to bovine mastitis in Switzerland: Clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. Journal of Dairy Science, 102(4), 3274-3281. https://doi.org/10.3168/jds.2018-15317
Kim, N. H., Yun, A. R., & Rhee, M. S. (2011). Prevalence and classification of toxigenic Staphylococcus aureus isolated from refrigerated ready-to-eat foods (sushi, kimbab and California rolls) in Korea. Journal of Applied Microbiology, 111(6), 1456-1464. https://doi.org/10.1111/j.1365-2672.2011.05168.x
Kumar, R., Yadav, B. R., & Singh, R. S. (2010). Genetic determinants of antibiotic resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Current Microbiology, 60(5), 379-386. https://doi.org/10.1007/s00284-009-9553-1
Kuramae-Izioka, E. E. (1997). A rapid, easy and high yield protocol for total genomic DNA isolation of Colletotrichum gloeosporioides and Fusarium oxysporum. Unimar, 19(3), 683-689.
Liu, H., Li, S., Meng, L., Dong, L., Zhao, S., Lan, X., Wang, J., & Zheng, N. (2017). Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. Journal of Dairy Science, 100(11), 8796-8803. https://doi.org/10.3168/jds.2017-13370
Luo, K., Shao, F., Kamara, K. N., Chen, S., Zhang, R., Duan, G., & Yang, H. (2018). Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food. Journal of Clinical Laboratory Analysis, 32(7), e22456. https://doi.org/10.1002/jcla.22456
Manukumar, H. M., & Umesha, S. (2017). MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Scientific Reports, 7(1), 11414. https://doi.org/10.1038/s41598-017-11597-z
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Staphylococcus species. In Edinburgh (Ed.), Clinical Veterinary Microbiology (2nd ed., pp. 105-120). Elsevier.
Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, P. H., Ouellete, M., & Bergeron, M. G. (2001). Development of a PCR Assay for Identification of Staphylococci at Genus and Species Levels Journal of Clinical Microbiology, 39(7), 2541-2547. https://doi.org/10.1128/jcm.39.7.2541-2547.2001
Mehrotra, M., Wang, G., & Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of Clinical Microbiology, 38(3), 1032-1035. https://doi.org/10.1128/jcm.38.3.1032-1035.2000
Nix, I. D., Idelevich, E. A., Storck, L. M., Sparbier, K., Drews, O., Kostrzewa, M., & Becker, K. (2020). Detection of Methicillin Resistance in Staphylococcus aureus From Agar Cultures and Directly From Positive Blood Cultures Using MALDI-TOF Mass Spectrometry-Based Direct-on-Target Microdroplet Growth Assay. Frontiers in Microbiology, 11, 232. https://doi.org/10.3389/fmicb.2020.00232
Paniagua-Contreras, G., Sáinz-Espuñes, T., Monroy-Pérez, E., Rodríguez-Moctezuma, J. R., Arenas-Aranda, D., Negrete-Abascal, E., & Vaca, S. (2012). Virulence Markers in Staphylococcus aureus Strains Isolated from Hemodialysis Catheters of Mexican Patients. Advances in Microbiology, 2(4), 476-487. https://doi.org/10.4236/aim.2012.24061
Pérez-Sancho, M., Vela, A. I., Horcajo, P., Ugarte-Ruiz, M., Domínguez, L., Fernández-Garayzábal, J. F., & Fuente, R. (2018). Rapid differentiation of Staphylococcus aureus subspecies based on MALDI-TOF MS profiles. Journal of Veterinary Diagnostic Investigation, 30(6), 813-820. https://doi.org/10.1177/1040638718805537
Pizauro, L. J. L., Almeida, C. C., Silva, S. R., MacInnes, J. I., Kropinski, A. M., Zafalon, L. F., Avila, F. A., & Mello Varani, A. (2021). Genomic comparisons and phylogenetic analysis of mastitis-related staphylococci with a focus on adhesion, biofilm, and related regulatory genes. Scientific Reports, 11(1), 17392. https://doi.org/10.1038/s41598-021-96842-2
R Core (2016). R: a Language and Environment for Statistical Computing. Retrieved from: http://www.R-project.org
Ren, Q., Liao, G., Wu, Z., Lv, J., & Chen, W. (2020). Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. Journal of Dairy Science, 103(4), 3368-3380. https://doi.org/10.3168/jds.2019-17420
Ribot, E. M., Fair, M. A., Gautom, R., Cameron, D. N., Hunter, S. B., Swaminathan, B., & Barrett, T. J. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathogens and Disease, 3(1), 59–67. https://doi.org/10.1089/fpd.2006.3.59
Rossi, C. C., Pereira, M. F., & Giambiagi-Demarval, M. (2020). Underrated staphylococcus species and their role in antimicrobial resistance spreading. Genetics and Molecular Biology, 43(1 Suppl. 2), 1-10. https://doi.org/10.1590/1678-4685-gmb-2019-0065
Santos, D. C., Lange, C. C., Avellar-Costa, P., Santos, K. R. N., Brito, M. A. V. P., & Giambiagi-deMarval, M. (2016). Staphylococcus chromogenes, a coagulase-negative Staphylococcus species that can clot plasma. Journal of Clinical Microbiology, 54(5), 1372-1375. https://doi.org/10.1128/JCM.03139-15
Schmidt, T., Kock, M. M., & Ehlers, M. M. (2017). Molecular characterization of staphylococcus aureus isolated from bovine mastitis and close human contacts in South African dairy herds: Genetic diversity and inter-species host transmission. Frontiers in Microbiology, 8, 511. https://doi.org/10.3389/fmicb.2017.00511
Silva, E. R., & Silva, N. (2005). Coagulase gene typing of Staphylococcus aureus isolated from cows with mastitis in southeastern Brazil. Canadian Journal of Veterinary Research, 69(4), 260-264.
Szafraniec, G. M., Szeleszczuk, P., & Dolka, B. (2020). A review of current knowledge on staphylococcus agnetis in poultry. Animals, 10(8), 1421. https://doi.org/10.3390/ani10081421
Tam, K., & Torres, V. J. (2019). Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Gram-Positive Pathogens, 7(2), 640-668. https://doi.org/10.1128/9781683670131.ch40
Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37
Vitale, M., Gaglio, S., Galluzzo, P., Cascone, G., Piraino, C., Di Marco Lo Presti, V., & Alduina, R. (2018). Antibiotic Resistance Profiling, Analysis of Virulence Aspects and Molecular Genotyping of Staphylococcus aureus Isolated in Sicily, Italy. Foodborne Pathogens and Disease, 15(3), 177-185. https://doi.org/10.1089/fpd.2017.2338
Wang, W., Lin, X., Jiang, T., Peng, Z., Xu, J., Yi, L., Li, F., Fanning, S., & Baloch, Z. (2018). Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Frontiers in Microbiology, 9, 1123. https://doi.org/10.3389/fmicb.2018.01123
Zhao, S., Tyson, G. H., Chen, Y., Li, C., Mukherjee, S., Young, S., Lam, C., Folster, J. P., Whichard, J. M., & McDermott, P. F. (2016). Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Applied and Environmental Microbiology, 82(2), 459-466. https://doi.org/10.1128/AEM.02873-15