Drying kinetics and mass transfer parameters of mung beans dried using a convective dryer

Authors

DOI:

https://doi.org/10.5327/fst.00169

Keywords:

Vigna radiata L., modeling, thin-layer drying kinetics, temperature

Abstract

Convective drying of mung bean seeds was conducted to investigate drying kinetics and mass transfer parameters at temperatures of 40, 50, 60, 70, and 80°C and a fixed air velocity of 1.2 m s-1. Drying characteristics were determined by drying rate, moisture ratio, diffusion coefficient, activation energy, Biot number, and mass transfer coefficient. Drying models such as Newton, Page, Henderson and Pabis, Logarithmic, Midilli, Two-term, and Diffusion approximation were applied and fitted to the moisture ratio of the experimental data. The drying rate was significantly affected by the drying temperature. The Midilli model was considered the most suitable for experimental drying curves. The effective moisture diffusivity ranged from 3.19×10-9 to 10.76×10-9 m2 s-1, with an activation energy of 59.78 kJ mol-1. Similar to the mass transfer coefficient, the Biot number increased with increasing drying temperature. The simultaneous transfer of heat and mass was controlled by diffusion and surface.

Downloads

Download data is not yet available.

References

Anwar, F., Latif, S., Przybylski, R., Sultana, B., & Ashraf, M. (2007). Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science, 72(7), S503-S510. https://doi.org/10.1111/J.1750-3841.2007.00462.X

Barati, E., & Esfahani, J. A. (2013). A novel approach to evaluate the temperature during drying of food products with negligible external resistance to mass transfer. Journal of Food Engineering, 114(1), 39-46. https://doi.org/10.1016/J.JFOODENG.2012.07.028

Brasil (2009). Regras para análise de sementes. Ministério da Agricultura Pecuária e Abastecimento.

Darvishi, H., Farhudi, Z., & Behroozi-Khazaei, N. (2017). Mass transfer parameters and modeling of hot air drying kinetics of dill leaves. Chemical Product and Process Modeling, 12(2), 1-15. https://doi.org/10.1515/CPPM-2015-0079

Delfiya, D. S. A., Prashob, K., Murali, S., Alfiya, P. V., Samuel, M. P., & Pandiselvam, R. (2022). Drying kinetics of food materials in infrared radiation drying: A review. Journal of Food Process Engineering, 45(6), e13810. https://doi.org/10.1111/JFPE.13810

Dhurve, P., Kumar Arora, V., Kumar Yadav, D., & Malakar, S. (2022). Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer. Materials Today: Proceedings, 59(Part 1), 926-932. https://doi.org/10.1016/J.MATPR.2022.02.008

Dhurve, P., Tarafdar, A., & Arora, V. K. (2021). Vibro-fluidized bed drying of pumpkin seeds: Assessment of mathematical and artificial neural network models for drying kinetics. Journal of Food Quality, 2021, 7739732. https://doi.org/10.1155/2021/7739732

Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131-140. https://doi.org/10.1016/J.FOODHYD.2017.01.003

Favero, V. O., Carvalho, R. H. de, Leite, A. B. C., Freitas, K. M. de, Zilli, J. É., Xavier, G. R., Rumjanek, N. G., & Urquiaga, S. (2021). Characterization and nodulation capacity of native bacteria isolated from mung bean nodules used as a trap plant in Brazilian tropical soils. Applied Soil Ecology, 167, 104041. https://doi.org/10.1016/J.APSOIL.2021.104041

Ganesan, K., & Xu, B. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness, 7(1), 11-33. https://doi.org/10.1016/J.FSHW.2017.11.002

Golpour, I., Guiné, R. P. F., Poncet, S., Golpour, H., Amiri Chayjan, R., & Amiri Parian, J. (2021). Evaluating the heat and mass transfer effective coefficients during the convective drying process of paddy (Oryza sativa L.). Journal of Food Process Engineering, 44(9), e13771. https://doi.org/10.1111/JFPE.13771

Hou, D., Feng, Q., Niu, Z., Wang, L., Yan, Z., & Zhou, S. (2023). Promising mung bean proteins and peptides: A comprehensive review of preparation technologies, biological activities, and their potential applications. Food Bioscience, 55, 102972. https://doi.org/10.1016/J.FBIO.2023.102972

Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/NU11061238

Iriti, M., & Varoni, E. M. (2017). Pulses, healthy, and hustainable hood sources for feeding the planet. International Journal of Molecular Sciences, 18(2), 255. https://doi.org/10.3390/IJMS18020255

Jiang, N., Ma, J., Ma, R., Zhang, Y., Chen, P., Ren, M., & Wang, C. (2022). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 43, e100422. https://doi.org/10.1590/FST.100422

Junqueira, M. H., Siqueira, V. C., Schoeninger, V., Hartmann Filho, C. P., Quequeto, W., Leite, R. A., & Pereira, C. G. (2018). Desempenho de plântulas de sementes de feijão BRS Estilo submetidas a diferentes temperaturas de secagem. Global Science and Technology, 11(2), 304-314.

Keres, G., Silva, E. C. da, Olibone, D., Pivetta, L. G., & Olibone, A. P. E. (2019). Desempenho de feijoeiro mungo em densidades populacionais e espaçamento entre linhas no Mato Grosso. Scientia Agraria Paranaensis, 18(3), 251-258. https://doi.org/https://doi.org/10.18188/sap.v18i3.22379

Khaket, T. P., Dhanda, S., Jodha, D., & Singh, J. (2015). Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds. Bioorganic Chemistry, 63, 132-141. https://doi.org/10.1016/J.BIOORG.2015.10.004

Kosasih, E. A., Zikri, A., & Dzaky, M. I. (2020). Effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava. Case Studies in Thermal Engineering, 19, 100633. https://doi.org/10.1016/J.CSITE.2020.100633

Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT - Food Science and Technology, 101, 630-638. https://doi.org/10.1016/J.LWT.2018.11.076

Loan, L. T. K., Thuy, N. M., & Tai, N. V. (2023). Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice. Food Science and Technology, 43, e27623. https://doi.org/10.5327/FST.27623

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3

Maia, R. B., Santos, S. G. F., Queiroz, J. S., Rodovalho, R. S., & Silva, D. P. (2019). Drying kinetics and thermodynamic properties of pigeon pea beans. Científica, 47(2), 164-174. https://doi.org/10.15361/1984-5529.2019V47N2P164-174

Malakar, S., Arora, V. K., & Nema, P. K. (2021). Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove. Renewable Energy, 168, 568-580. https://doi.org/10.1016/J.RENENE.2020.12.068

Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122. https://doi.org/10.1016/S0196-8904(02)00099-7

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. https://doi.org/10.1016/J.JFOODENG.2004.04.023

Morais, S. J. da S., Devilla, I. A., Ferreira, D. A., & Teixeira, I. R. (2013). Mathematical modeling of the drying curves and diffusion coefficient of cowpea grains (Vigna unguiculata (L.) Walp.). Revista Ciência Agronômica, 44(3), 455-463. https://doi.org/10.1590/S1806-66902013000300006

Moreno, Á. H., Aguirre, Á. J., Hernández Maqueda, R., Jiménez Jiménez, G., & Torres Miño, C. (2022). Effect of temperature on the microwave drying process and the viability of amaranth seeds. Biosystems Engineering, 215, 49-66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2021.12.019

Muñoz, M., Ancos, B. de, Sánchez-Moreno, C., & Cano, M. P. (2006). Evaluation of chemical and physical (high-pressure and temperature) treatments to improve the safety of minimally processed mung bean sprouts during refrigerated storage. Journal of Food Protection, 69(10), 2395-2402. https://doi.org/10.4315/0362-028X-69.10.2395

Onwude, D. I., Hashim, N., & Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57(Part A), 132-145. https://doi.org/10.1016/J.TIFS.2016.09.012

Quequeto, W. D., Siqueira, V. C., Ferranti, L. F., Schoeninger, V., & Leite, R. A. (2017). Cinética de secagem dos grãos de feijão cultivar IPR Tangará. Energia na Agricultura, 32(4), 408-415. https://doi.org/10.17224/EnergAgric.2017v32n4p408-415

Roberts, J. S., Kidd, D. R., & Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89(4), 460-465. https://doi.org/10.1016/J.JFOODENG.2008.05.030

Sahoo, M., Titikshya, S., Aradwad, P., Kumar, V., & Naik, S. N. (2022). Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Industrial Crops and Products, 176, 114258. https://doi.org/10.1016/J.INDCROP.2021.114258

Silva, F. P. da, Siqueira, V. C., Quequeto, W. D., Junqueira, M. H., & Goneli, A. L. D. (2018). Propriedades físicas dos grãos de niger. Revista Engenharia na Agricultura, 26(6), 507-515. https://doi.org/10.13083/reveng.v26i6.864

Silva, L. P., Santos, S. G. F., Queiroz, J. S., Rodovalho, R. S., & Buso, W. H. D. (2020). Drying kinetics of soybean grains. Científica, 48(2), 99-106. https://doi.org/10.15361/1984-5529.2020V48N2P99-106

Silva, W. P. da, Rodrigues, A. F., Silva, C. M. D. P. S. e, Castro, D. S. de, & Gomes, J. P. (2015). Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. Journal of Food Engineering, 166, 230-236. https://doi.org/10.1016/J.JFOODENG.2015.06.018

Siqueira, V. C., Leite, R. A., Mabasso, G. A., Martins, E. A. S., Quequeto, W. D., & Isquierdo, E. P. (2020a). Drying kinetics and effective diffusion of buckwheat grains. Ciência e Agrotecnologia, 44, e011320. https://doi.org/10.1590/1413-7054202044011320

Siqueira, V. C., Mabasso, G. A., Quequeto, W. D., Silva, C. R. da, Martins, E. A. S., & Isquierdo, E. P. (2020b). Drying kinetics and effective diffusion of watermelon seeds. Research, Society and Development, 9(4), e16942887. https://doi.org/10.33448/RSD-V9I4.2887

Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Drying kinetics of jatropha seeds. Revista Ceres, 59(2), 171-177. https://doi.org/10.1590/S0034-737X2012000200004

Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., Wang, J., & Xiao, H. W. (2019). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology, 38(9), 1151-1164. https://doi.org/10.1080/07373937.2019.1616752

Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in Statistics, 22(4), 1079-1106. https://doi.org/10.1080/03610919308813143

Xie, L., Mujumdar, A. S., Fang, X. M., Wang, J., Dai, J. W., Du, Z. L., Xiao, H. W., Liu, Y., & Gao, Z. J. (2017). Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (Lycium barbarum L.): Effects on drying kinetics and quality attributes. Food and Bioproducts Processing, 102, 320-331. https://doi.org/10.1016/J.FBP.2017.01.012

Yang, Z., Zhu, E., Zhu, Z., Wang, J., & Li, S. (2013). A comparative study on intermittent heat pump drying process of Chinese cabbage (Brassica campestris L.ssp) seeds. Food and Bioproducts Processing, 91(4), 381-388. https://doi.org/10.1016/J.FBP.2013.02.006

Yi-Shen, Z., Shuai, S., & Fitzgerald, R. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food and Nutrition, 62, 1-11. https://doi.org/10.29219%2Ffnr.v62.1290

Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. https://doi.org/10.1080/07373939608917205

Downloads

Published

2024-03-13

How to Cite

SIQUEIRA, V. C., CRIPPA, D. S., MABASSO, G. A., WESTEMAIER, E. da S., MARTINS, E. A. S., SCHOENINGER, V., CASTRO, L. K. de, & TOLEDO, M. Z. (2024). Drying kinetics and mass transfer parameters of mung beans dried using a convective dryer. Food Science and Technology, 44. https://doi.org/10.5327/fst.00169

Issue

Section

Original Articles