Fatty acid profile of Greek yogurt with colostrum addition
DOI:
https://doi.org/10.5327/fst.26023Keywords:
dairy products, functional foods, nutraceutical properties, nutritional qualityAbstract
The nutraceutical properties of colostrum have stimulated interest in its use in the production of functional foods and supplements that benefit human health. This study investigated the fatty acid profile of Greek yogurt formulations added with bovine colostrum. Four formulations of Greek yogurt were developed with different colostrum levels: 0, 10, 20, and 30%. Next, fat extraction and esterification were performed to determine the fatty acid profile. Then, the concentrations of fatty acid methyl esters were determined by gas chromatography. No effect was observed for the C14:0, C16:0, and C18:0 concentrations with the addition of colostrum. Although the C18:1c9, C18:2n6, C18:3n3, and C20:4n6 concentrations were not affected by colostrum, the C16:1c9, polyunsaturated fatty acids, and n-6 fatty acid contents increased, without changes in the n-6 to n-3 ratio. C18:1t9 was the only monounsaturated fatty acid that differed among formulations and it increased with colostrum addition. There was no effect of the colostrum increase on the total saturated, unsaturated, and monounsaturated fatty acid concentrations. The bovine colostrum used as an ingredient in Greek yogurt showed slight changes in the fatty acid profile. The use of colostrum is an alternative to reduce costs and maintain health benefits.
Downloads
References
Association of the Official Analytical Chemists (AOAC). (2012). Official methods of analysis of the Association of Official Analytical Chemists International (17th ed.). AOAC.
Bainbridge, M. L., Cersosimo, L. M., Wright, A. D. G., & Kraft, J. (2016). Content and Composition of Branched-Chain Fatty Acids in Bovine Milk Are Affected by Lactation Stage and Breed of Dairy Cow. PloS One, 11(3), e0150386. https://doi.org/10.1371/JOURNAL.PONE.0150386
Baldin, M., Gama, M. A. S., Dresch, R., Harvatine, K. J., & Oliveira, D. E. (2013). A rumen unprotected conjugated linoleic acid supplement inhibits milk fat synthesis and improves energy balance in lactating goats. Journal of Animal Science, 91(7), 3305-3314. https://doi.org/10.2527/jas.2012-5766
Borad, S. G., & Singh, A. K. (2018). Colostrum immunoglobulins: Processing, preservation and application aspects. International Dairy Journal, 85, 201-210. https://doi.org/10.1016/J.IDAIRYJ.2018.05.016
Chandan, R. C. (2017). An Overview of Yogurt Production and Composition. Yogurt in Health and Disease Prevention, 31-47. https://doi.org/10.1016/B978-0-12-805134-4.00002-X
Churakov, M., Karlsson, J., Edvardsson Rasmussen, A., & Holtenius, K. (2021). Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal: An International Journal of Animal Bioscience, 15(7), 100253. https://doi.org/10.1016/J.ANIMAL.2021.100253
Cruz-Hernandez, C., Kramer, J. K. G., Kennelly, J. J., Glimm, D. R., Sorensen, B. M., Okine, E. K., Goonewardene, L. A., & Weselake, R. J. (2007). Evaluating the Conjugated Linoleic Acid and Trans 18:1 Isomers in Milk Fat of Dairy Cows Fed Increasing Amounts of Sunflower Oil and a Constant Level of Fish Oil. Journal of Dairy Science, 90(8), 3786-3801. https://doi.org/10.3168/JDS.2006-698
Dunbar, B. S., Bosire, R. V., & Deckelbaum, R. J. (2014). Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Molecular and Cellular Endocrinology, 398(1-2), 69-77. https://doi.org/10.1016/J.MCE.2014.10.009
Fernandez, M. A., Picard-Deland, E., Le Barz, M., Daniel, N., & Marette, A. (2017). Yogurt and Health. Fermented Foods in Health and Disease Prevention, 305-338. https://doi.org/10.1016/B978-0-12-802309-9.00013-3
García-Fernández, M., Gutiérrez-Gil, B., García-Gámez, E., & Arranz, J. J. (2009). Genetic variability of the Stearoyl-CoA desaturase gene in sheep. Molecular and Cellular Probes, 23(2), 107-111. https://doi.org/10.1016/J.MCP.2009.01.001
Gómez-Cortés, P., Juárez, M., & de la Fuente, M. A. (2018). Milk fatty acids and potential health benefits: An updated vision. Trends in Food Science & Technology, 81, 1-9. https://doi.org/10.1016/J.TIFS.2018.08.014
Hanus, O., Samkova, E., Křížova, L., Hasoňova, L., & Kala, R. (2018). Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Molecules, 23(7), 1636. https://doi.org/10.3390/MOLECULES23071636
McGrath, B. A., Fox, P. F., McSweeney, P. L. H., & Kelly, A. L. (2015). Composition and properties of bovine colostrum: a review. Dairy Science & Technology, 96(2), 133-158. https://doi.org/10.1007/S13594-015-0258-X
Mizelman, E., Duff, W., Kontulainen, S., & Chilibeck, P. D. (2017). The Health Benefits of Bovine Colostrum. Nutrients in Dairy and Their Implications for Health and Disease, 51-60. https://doi.org/10.1016/B978-0-12-809762-5.00004-8
O’Callaghan, T. F., O’Donovan, M., Murphy, J. P., Sugrue, K., Mannion, D., McCarthy, W. P., Timlin, M., Kilcawley, K. N., Hickey, R. M., & Tobin, J. T. (2020). Evolution of the bovine milk fatty acid profile – From colostrum to milk five days post parturition. International Dairy Journal, 104, 104655. https://doi.org/10.1016/J.IDAIRYJ.2020.104655
Pipoyan, D., Stepanyan, S., Stepanyan, S., Beglaryan, M., Costantini, L., Molinari, R., & Merendino, N. (2021). The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods, 10(10), 2452. https://doi.org/10.3390/FOODS10102452
S. Abdel-Ghany, A., & A. Zaki, D. (2018). Production of Novel Functional Yoghurt Fortified with Bovine Colostrum and Date Syrup for Children. Alexandria Science Exchange Journal, 39(4), 651-662. https://doi.org/10.21608/ASEJAIQJSAE.2018.20475
Schulze, M. B., Minihane, A. M., Saleh, R. N. M., & Risérus, U. (2020). Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. The Lancet. Diabetes & Endocrinology, 8(11), 915-930. https://doi.org/10.1016/S2213-8587(20)30148-0
Serafeimidou, A., Zlatanos, S., Laskaridis, K., & Sagredos, A. (2012). Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts. Food Chemistry, 134(4), 1839-1846. https://doi.org/10.1016/J.FOODCHEM.2012.03.102
Silva, E. G. D. S. O., Anaya, K., Bezerra, M. F., Macêdo, C. S., Urbano, S. A., Borba, L. H. F., Barbosa, I. M., Ramalho, H. M. M., Cipolat-Gotet, C., Galdino, A. B. S., Oliveira, J. P. F., & Rangel, A. H. D. N. (2021). Physicochemical and sensory evaluation of greek style yoghurt with bovine colostrum. Food Science and Technology, 42, e22121. https://doi.org/10.1590/FST.22121
Sumarmono, J., Sulistyowati, M., & Soenarto. (2015). Fatty Acids Profiles of Fresh Milk, Yogurt and Concentrated Yogurt from Peranakan Etawah Goat Milk. Procedia Food Science, 3, 216-222. https://doi.org/10.1016/J.PROFOO.2015.01.024
Venn-Watson, S., Lumpkin, R., & Dennis, E. A. (2020). Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential? Scientific Reports, 10(1), 8161. https://doi.org/10.1038/S41598-020-64960-Y
Wolff, R. L., Bayard, C. C., & Fabien, R. J. (1995). Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18:1 acids. Application to the study of seasonal variations in french butters. Journal of the American Oil Chemists’ Society, 72(12), 1471-1483. https://doi.org/10.1007/BF02577840