Analysis of physicochemical components and antioxidants of four kinds of Guizhou honey
DOI:
https://doi.org/10.5327/fst.23023Keywords:
honey, physicochemical properties, antioxidant, correlation analysis, principal component analysisAbstract
The physicochemical profile composition of four different types of honey samples and their antioxidant activity were analyzed. The physicochemical properties, including fructose, glucose, sucrose, total phenols (TP), flavonoids, insoluble matter, 5-hydroxymethylfurfural (5-HMF), amylase, sucrase, and 17 amino acids, and antioxidant power, were determined in four kinds of honey from Guizhou. The results showed significant differences in the physicochemical composition and antioxidant power of different honey samples. Among them, compared with other honey samples, Coptis chinensis Franc honey showed more TP and total phenolic content and a stronger antioxidant capacity. The correlation analysis showed that 5-HMF was negatively correlated with antioxidant indicators, TP, flavonoids, and multiple amino acids, implying that 5-HMF may affect the quality and biological activity of honey. Various amino acids were significantly correlated with antioxidant activity, TP, and flavonoids. Principal component analysis revealed that multiple amino acids played a major role in the first principal component (PC1), which may suggest that amino acids are an important factor in the quality of honey. Taken together, these findings provide a reference for further research on honey quality from different sources and its associated health effects.
Downloads
References
Ajlouni, S., & Sujirapinyokul, P. (2010). Hydroxymethylfurfuraldehyde and amylase contents in Australian honey. Food Chemistry, 119(3), 1000-1005.
Aljohar, H. I., Maher, H. M., Albaqami, J., Al-Mehaizie, M., Orfali, R., Orfali, R., & Alrubia, S. (2018). Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm Journal, 26(7), 932-942. https://doi.org/10.1016/j.jsps.2018.04.013
Archilia, M. D., Neto, A. A. L., Marcucci, M. C., Alonso, R. C. B., Camargo, T. C. de, Camargo, R. C., & Sawaya, A. C. H. F. (2021). Characterization of Brazilian monofloral and polyfloral honey by UHPLC-MS and classic physical-chemical analyses. Journal of Apicultural Research, 62(3), 578-589. https://doi.org/10.1080/00218839.2021.1886747
Brazil (2000). Technical regulation of honey identity and quality.
Brudzynski, K., Sjaarda, C., & Maldonado-Alvarez, L. (2013). A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins? Plos One, 8(8), e72897. https://doi.org/10.1371/journal.pone.0072897
Can, Z., Yildiz, O., Sahin, H., Akyuz Turumtay, E., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, 180, 133-141. https://doi.org/10.1016/j.foodchem.2015.02.024
Commission, C. A. (2000). The draft revised Codex standard for honey. Food and Agriculture Organization of the United Nations.
Cotte, J. F., Casabianca, H., Giroud, B., Albert, M., Lheritier, J., & Grenier-Loustalot, M. F. (2004). Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Analytical and Bioanalytical Chemistry, 378(5), 1342-1350. https://doi.org/10.1007/s00216-003-2430-z
Cavrar, S., Yildiz, O., Sahin, H., Karahalil, F., & Kolayli, S. (2013). Comparison of physical and biochemical characteristics of different quality of Turkish honey. Uludag Bee Journal November, 13(2), 55-62.
da Costa, I. F., & Toro, M. J. U. (2021). Evaluation of the antioxidant capacity of bioactive compounds and determination of proline in honeys from Para. Journal of Food Science and Technology, 58(5), 1900-1908. https://doi.org/10.1007/s13197-020-04701-1
da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051
Dudonné, S., Vitrac, X., Cutière, P., Woillez, M., Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assay. Journal of Agriculture and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r
Feridoun, S., & Hiroyuki, Y. (2007). Kinetics of the Decomposition of Fructose Catalyzed by Hydrochloric Acid in Subcritical Water: Formation of 5-Hydroxymethylfurfural, Levulinic, and Formic Acids. Industrial & Engineering Chemistry Research, 46(23), 7703-7710. https://doi.org/10.1021/ie061673e
Gheldof, N. & Engeseth, N. J. (2002). Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. Journal of Agriculture and Food Chemistry, 50(10), 3050-3055. https://doi.org/10.1021/jf0114637
Guo, M., Xing-Tao, X. U., & Zhi-Wu, W. U. (2011). Binding mechanism of rhaponticin and human serum albumin. Acta Pharmaceutica Sinica, (12), 1084-1092.
Guo, P., Deng, Q., & Lu, Q. (2019). Anti-alcoholic effects of honeys from different floral origins and their correlation with honey chemical compositions. Food Chemistry, 286, 608-615. https://doi.org/10.1016/j.foodchem.2019.02.058
Han, L., Wang, R., Zhang, X., Yu, X., Zhou, L., Song, T., Deng, X., Zhang, Y., Zhang, L., & Bai, C. (2019). Advances in Processing and Quality Control of Traditional Chinese Medicine Coptidis rhizome (Huanglian): A Review. Journal of AOAC International, 102(3), 699-707. https://doi.org/10.5740/jaoacint.18-0303
Hermosı́n, I., Chicón, R. M., & Dolores Cabezudo, M. (2003). Free amino acid composition and botanical origin of honey. Food Chemistry, 83(2), 263-268. https://doi.org/10.1016/S0308-8146(03)00089-X
Islam, M. N., Khalil, M. I., Islam, M. A., & Gan, S. H. (2014). Toxic compounds in honey. Journal of Applied Toxicology, 34(7), 733-742. https://doi.org/10.1002/jat.2952
Lee, H. S., & Nagy, S. (1990). Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. Journal of Food Processing and Preservation, 14(3), 171-178. https://doi.org/10.1111/j.1745-4549.1990.tb00126.x
Leon-Ruiz, V., Gonzalez-Porto, A. V., Al-Habsi, N., Vera, S., San Andres, M. P., & Jauregi, P. (2013). Antioxidant, antibacterial and ACE-inhibitory activity of four monofloral honeys in relation to their chemical composition. Food & Function, 4(11), 1617-1624. https://doi.org/10.1039/C3FO60221D
Muhammad, N. I. I., & Sarbon, N. M. (2023). Physicochemical profile, antioxidant activity and mineral contents of honey from stingless bee and honey bee species. Journal of Apicultural Research, 62(2), 394-401. https://doi.org/10.1080/00218839.2021.1896214
Ouchemoukh, S., Schweitzer, P., Bachir Bey, M., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food Chemistry, 121(2), 561-568. https://doi.org/10.1016/j.foodchem.2009.12.047
Pauliuc, D., Dranca, F., & Oroian, M. (2020). Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for romanian honey authentication. Foods, 9(3), 306. https://doi.org/10.3390/foods9030306
Pereira, J. R., Campos, A. N. da R., Oliveira, F. C. de, Silva, V. R. O., David, G. F., Silva, J. G. Da, Nascimento, W. W. G., Silva, M. H. L., & Denadai, Â. M. L. (2020). Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil. Food Bioscience, 36, 100644. https://doi.org/10.1016/j.fbio.2020.100644
Sak-Bosnar, M., & Sakac, N. (2012). Direct potentiometric determination of diastase activity in honey. Food Chemistry, 135(2), 827-831. https://doi.org/10.1016/j.foodchem.2012.05.006
Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Cardetti, M., & Keen, C. L. (2003). Honey with high levels of antioxidants can provide protection to healthy human subjects. Journal of Agriculture Food Chemistry, 51(6), 1732-1735. https://doi.org/10.1021/jf025928k
Sergiel, I., Pohl, P., & Biesaga, M. (2014). Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 145, 404-408. https://doi.org/10.1016/j.foodchem.2013.08.068
Shapla, U. M., Solayman, M., Alam, N., Khalil, M. I., & Gan, S. H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent Journal, 12, 35. https://doi.org/10.1186/s13065-018-0408-3
Sommano, S. R., Bhat, F. M., Wongkeaw, M., Sriwichai, T., Sunanta, P., Chuttong, B., & Burgett, M. (2020). Amino Acid Profiling and Chemometric Relations of Black Dwarf Honey and Bee Pollen. Frontiers Nutrition, 7, 558579. https://doi.org/10.3389%2Ffnut.2020.558579
Stephens, J. M., Schlothauer, R. C., Morris, B. D., Yang, D., Fearnley, L., Greenwood, D. R., & Loomes, K. M. (2010). Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chemistry, 120(1), 78-86. https://doi.org/10.1016/j.foodchem.2009.09.074
Tartibian, B., & Maleki, B. H. (2012). Correlation Between Seminal Oxidative Stress Biomarkers and Antioxidants with Sperm DNA Damage in Elite Athletes and Recreationally Active Men. Clinical Journal of Sport Medicine, 22(2), 132-139. https://doi.org/10.1097/jsm.0b013e31823f310a
Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., Dogan, M., & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042
Yücel, Y., & Sultanog˘lu, P. (2013). Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience, 1, 16-25. https://doi.org/10.1016/j.fbio.2013.02.001
Żoltowska, K., Lipinski, Z., Łopieńska-Biernat, E., Farjan, M., & Dmitryjuk, M. (2012). The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica. Journal of Insect Science, 12, 22. https://doi.org/10.1673/031.012.2201