Analysis of storage quality of crayfish (Procambarus clarkii) meat based on sous-vide cooking

Authors

  • Qing ZHAO Hubei University of Technology, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering, Hubei Key Laboratory of Industrial Microbiology, Wuhan, China. https://orcid.org/0000-0003-1130-4651
  • Hailan LI Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Key Laboratory of Cold Chain Logistics Technology for Agro-product, Wuhan, China https://orcid.org/0000-0002-2296-1932
  • Jun CAI Hubei University of Technology, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering, Hubei Key Laboratory of Industrial Microbiology, Wuhan, China.
  • Tao LIAO Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Key Laboratory of Cold Chain Logistics Technology for Agro-product, Wuhan, China
  • Liang QIU Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Key Laboratory of Cold Chain Logistics Technology for Agro-product, Wuhan, China
  • Xiaoyan ZU Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Key Laboratory of Cold Chain Logistics Technology for Agro-product, Wuhan, China https://orcid.org/0000-0002-9489-2462

DOI:

https://doi.org/10.5327/fst.26423

Keywords:

sous-vide, crayfish, storage, meat qualities, volatiles

Abstract

This study aimed to investigate the effect of different combinations of temperature and time of sous-vide (SV) on the quality of crayfish (Procambarus clarkii) meat. The changes in quality indexes and volatile components of crayfish meat after SV treatment were analyzed after refrigeration at 4°C for 1–7 days. The L* values of crayfish meat were higher in the SV group than in the control group (p<0.05). Heating at 75℃ effectively suppressed the decrease in hardness and increase in total volatile basic nitrogen (TVB-N) and total viable count (TVC) of crayfish meat (p<0.05). A heating time of 15 min was optimal for most of the indicators. TVB-N, thiobarbituric acid, and TVC were positively correlated with each other and negatively correlated with hardness. Using GC-MS, 59 volatile compounds were identified with a match of >85%. During storage, the highest percentages of volatile alkanes and aromatic hydrocarbons were 44.57 and 14.81%, respectively, with 33 species of aromatic hydrocarbons being identified. In conclusion, SV treatment with a heating temperature of 75℃ and heating time of 15 min improved the texture and flavor quality of crayfish meat during storage.

Downloads

Download data is not yet available.

References

Geng, H., Chen, L., Wang, S., Wu, Y., Gao, P., Jiang, Q., Yang, F., & Xia, W. (2022). Analysis of volatile compounds contributing to distinctive odour of silver carp (Hypophthalmichthys molitrix) surimi. International Journal of Food Science & Technology, 57(12), 7774-7786. https://doi.org/10.1111/ijfs.16141

Giavasis, I., Apostolopoulou, A., Deirmentzoglou, A., & Katsanidis, E. (2012). Combined hurdle effects of process parameters on biochemical, microbiological and sensory attributes of trout fillets. Journal of Food Processing and Preservation, 38(1), 466-476. https://doi.org/10.1111/j.1745-4549.2012.00795.x

González-Fandos, E. (2004). Evaluation of the microbiological safety and sensory quality of rainbow trout (Oncorhynchus mykiss) processed by the sous vide method. Food Microbiology, 21(2), 193-201. https://doi.org/10.1016/S0740-0020(03)00053-4

Hammoud, N. A., Zervou, S. K., Kaloudis, T., Christophoridis, C., Paraskevopoulou, A., Triantis, T. M., Slim, K., Szpunar, J., Fadel, A., Lobinski, R., & Hiskia, A. (2021). Investigation of the occurrence of cyanotoxins in lake Karaoun (Lebanon) by mass spectrometry, bioassays and molecular methods. Toxins, 13(10), 716. https://doi.org/10.3390/toxins13100716

Hendra, R., Khodijah, R., Putri, R., Amalia, R., Haryani, Y., Teruna, H. Y., & Abdulah, R. (2021). Cytotoxicity and antiplasmodial properties of different hylocereus polyrhizus peel extracts. Medical Science Monitor Basic Research, 27, e931118. https://doi.org/10.12659/MSMBR.931118

Karki, R., Bremer, P., Silcock, P., & Oey, I. (2022). Effect of sous vide processing on quality parameters of beef short ribs and optimisation of sous vide time and temperature using third-order multiple regression. Food and Bioprocess Technology, 15(7), 1629-1646. https://doi.org/10.1007/s11947-022-02849-6

Kathuria, D., Dhiman, A. K., & Attri, S. (2022). Sous vide, a culinary technique for improving quality of food products: A review. Trends in Food Science & Technology, 119, 57-68. https://doi.org/10.1016/j.tifs.2021.11.031

Kato, H. C. A., Peixoto Joele, M. R. S., Sousa, C. L., Ribeiro, S. C. A., & Lourenço, L. F. H. (2017). Evaluation of the shelf Life of tambaqui fillet processed by the sous vide method. Journal of Aquatic Food Product Technology, 26(10), 1144-1156. https://doi.org/10.1080/10498850.2014.986593

Kurt Kaya, G. (2022). The effects of different packaging methods and sous vide cooking on chemical, sensory, and microbiological changes of marinated crayfish (Astacus leptodactylus Esch., 1823). Journal of Food Processing and Preservation, 46(10), e16919. https://doi.org/10.1111/jfpp.16919

Lan, M., Li, L., Peng, X., Chen, J., Cao, Q., He, N., Cai, J., Li, B., & Zhang, X. (2021). Effects of different lipids on the physicochemical properties and microstructure of pale, soft and exudative (PSE)-like chicken meat gel. LWT – Food Science and Technology, 145, 111284. https://doi.org/10.1016/j.lwt.2021.111284

Lee, K. M., Son, M., Kang, J. H., Kim, D., Hong, S., Park, T. H., Chun, H. S., & Choi, S. S. (2018). A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Scientific Reports, 8(1), 547. https://doi.org/10.1038/s41598-017-19033-y

Li, Y., Li, C., Chen, M., Liu, Z., Zeng, M., & Hu, Y. (2022). Sous-vide cooking endows a better microstructure for hairtail (Trichiurus lepturus) than traditional cooking: Mechanisms of moisture migration. Journal of Food Science, 87(9), 3953-3964. https://doi.org/10.1111/1750-3841.16260

Li, Y., Tang, X., Shen, Z., & Dong, J. (2019). Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chemistry, 287, 126-132. https://doi.org/10.1016/j.foodchem.2019.01.213

Liu, C., Li, W., Lin, B., Yi, S., Ye, B., Mi, H., Li, J., Wang, J., & Li, X. (2021a). Comprehensive analysis of ozone water rinsing on the water-holding capacity of grass carp surimi gel. LWT – Food Science and Technology, 150, 111919. https://doi.org/10.1016/j.lwt.2021.111919

Liu, Z., Liu, Q., Wei, S., Sun, Q., Xia, Q., Zhang, D., Shi, W., Ji, H., & Liu, S. (2021b). Quality and volatile compound analysis of shrimp heads during different temperature storage. Food Chemistry: X, 12, 100156. https://doi.org/10.1016/j.fochx.2021.100156

Min, D. B., Ina, K., Peterson, R. J., & Chang, S. S. (1979). Preliminary identification of volatile flavor compounds in the neutral fraction of roast beef. Journal of Food Science, 44(3), 639-642. https://doi.org/10.1111/j.1365-2621.1979.tb08465.x

Mohan, C. O., Ravishankar, C. N., & Srinivasa Gopal, T. K. (2017). Effect of vacuum packaging and sous vide processing on the quality of Indian white shrimp (Fenneropenaeus indicus) during chilled storage. Journal of Aquatic Food Product Technology, 26(10), 1280-1292. https://doi.org/10.1080/10498850.2016.1236869

Morita, K., Kubota, K., & Aishima, T. (2001). Sensory characteristics and volatile components in aromas of boiled prawns prepared according to experimental designs. Food Research International, 34(6), 473-481. https://doi.org/10.1016/s0963-9969(01)00072-2

Olatunde, O. O., & Benjakul, S. (2021). Sous-vide cooking as a systematic approach for quality maintenance and shelf-life extension of crab lump meat. LWT – Food Science and Technology, 142, 111004. https://doi.org/10.1016/j.lwt.2021.111004

Özturan, S., & Ünal Şengör, G. F. (2022). Effects of cooking methods on the quality and safety of crayfish (Astacus leptodactylus Eschscholtz, 1823) during chilled storage. Journal of Food Processing and Preservation, 46(10), e16887. https://doi.org/10.1111/jfpp.16887

Paik, H. D., Kim, H. J., Nam, K. J., Kim, C. J., Lee, S. E., & Lee, D. S. (2006). Effect of nisin on the storage of sous vide processed Korean seasoned beef. Food Control, 17(12), 994-1000. https://doi.org/10.1016/j.foodcont.2005.07.005

Parlapani, F. F., Ferrocino, I., Michailidou, S., Argiriou, A., Haroutounian, S. A., Kokokiris, L., Rantsiou, K., & Boziaris, I. S. (2020). Microbiota and volatilome profile of fresh and chill-stored deepwater rose shrimp (Parapenaeus longirostris). Food Research International, 132, 109057. https://doi.org/10.1016/j.foodres.2020.109057

Pulgar, J. S., Gázquez, A., & Ruiz-Carrascal, J. (2012). Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Science, 90(3), 828-835. https://doi.org/10.1016/j.meatsci.2011.11.024

Roldan, M., Antequera, T., Armenteros, M., & Ruiz, J. (2014). Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins. Food Chemistry, 149, 129-136. https://doi.org/10.1016/j.foodchem.2013.10.079

Ruiz, J., Ventanas, J., & Cava, R. (2001). New device for direct extraction of volatiles in solid samples using SPME. Journal of Agricultural and Food Chemistry, 49(11), 5115-5121. https://doi.org/10.1021/jf0101298

Schellekens, M. (1996). New research issues in sous-vide cooking. Trends in Food Science & Technology, 7(8), 256-262. https://doi.org/10.1016/0924-2244(96)10027-3

Thathsarani, A. P. K., Alahakoon, A. U., & Liyanage, R. (2022). Current status and future trends of sous vide processing in meat industry; A review. Trends in Food Science & Technology, 129, 353-363. https://doi.org/10.1016/j.tifs.2022.10.009

Van Ba, H., Amna, T., & Hwang, I. (2013). Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. Meat Science, 94(4), 480-488. https://doi.org/10.1016/j.meatsci.2013.04.029

Ventanas, S., Estévez, M., Delgado, C. L., & Ruiz, J. (2007). Phospholipid oxidation, non-enzymatic browning development and volatile compounds generation in model systems containing liposomes from porcine Longissimus dorsi and selected amino acids. European Food Research and Technology, 225(5-6), 665-675. https://doi.org/10.1007/s00217-006-0462-2

Wan, J., Cao, A., & Cai, L. (2019). Effects of vacuum or sous-vide cooking methods on the quality of largemouth bass (Micropterus salmoides). International Journal of Gastronomy and Food Science, 18, 100181. https://doi.org/10.1016/j.ijgfs.2019.100181

Wang, W., Shen, X., Zhang, S., Lv, R., Liu, M., Xu, W., Chen, Y., & Wang, H. (2022). Research on Very Volatile Organic Compounds and Odors from Veneered Medium Density Fiberboard Coated with Water-Based Lacquers. Molecules, 27(11), 3626. https://doi.org/10.3390/molecules27113626

Weber, J., Bochi, V. C., Ribeiro, C. P., Victório, A. D. M., & Emanuelli, T. (2008). Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106(1), 140-146. https://doi.org/10.1016/j.foodchem.2007.05.052

Xiao, H., Li, N., Yan, L., & Xue, Y. (2021). The hydration characteristics, structural properties and volatile profile of squid (Symplectoteuthis oualaniensis) mantle muscle: Impacts of steaming, boiling, and sous vide cooking. Foods, 10(7), 1646. https://doi.org/10.3390/foods10071646

Yao, D., Xu, L., Wu, M., Wang, X., Zhu, L., & Wang, C. (2021). Effects of microbial community succession on flavor compounds and physicochemical properties during CS sufu fermentation. LWT – Food Science and Technology, 152, 112313. https://doi.org/10.1016/j.lwt.2021.112313

Ye, T., Zhu, Y., Wang, Y., Liu, R., Lin, L., Zheng, Z., & Lu, J. (2022). Effect of high pressure shucking on the gel properties and in vitro digestibility of myofibrillar proteins from red swamp crayfish (Procambarus clarkii). LWT – Food Science and Technology, 156, 113020. https://doi.org/10.1016/j.lwt.2021.113020

Yuan, Y. H., Liu, L. X., Guo, L., Wang, L., Hao, J. W., & Liu, Y. G. (2022). Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions. LWT – Food Science and Technology, 168, 113906. https://doi.org/10.1016/j.lwt.2022.113906

Zhu, W., Luan, H., Bu, Y., Li, X., Li, J., & Ji, G. (2019). Flavor characteristics of shrimp sauces with different fermentation and storage time. LWT – Food Science and Technology, 110, 142-151. https://doi.org/10.1016/j.lwt.2019.04.091

Downloads

Published

2023-08-22

How to Cite

ZHAO, Q., LI , H., CAI, J., LIAO, T., QIU, L., & ZU, X. (2023). Analysis of storage quality of crayfish (Procambarus clarkii) meat based on sous-vide cooking. Food Science and Technology, 43. https://doi.org/10.5327/fst.26423

Issue

Section

Original Articles