The production and recovery analysis of a promising recombinant phytase from Yersinia intermedia expressed in Escherichia coli and its potential use in biotechnology

Autores

  • William James Nogueira Lima Universidade Federal de Minas Gerais https://orcid.org/0000-0002-1128-1448
  • Ruth Maria Rocha Ribeiro Universidade Estadual de Montes Claros, Postgraduate Program in Biotechnology, Bioprocess Development Laboratory, Montes Claros, MG, Brazil https://orcid.org/0009-0002-9728-5366
  • Sandro Braga Soares Universidade Estadual de Montes Claros, Postgraduate Program in Biotechnology, Bioprocess Development Laboratory, Montes Claros, MG, Brazil. https://orcid.org/0000-0002-5342-7230
  • Quemuel Quesley Nunes Mendes Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0009-0008-8521-9218
  • Juan Pablo Soares Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0009-0005-1777-7339
  • Amanda Ferrari das Neves Neves Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0009-0002-3428-5246
  • Nathália Zenaide Durães Soares Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil https://orcid.org/0000-0001-8083-5195
  • Ludmila Ribeiro Mendes Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0009-0007-7146-9075
  • Izabella Mendes Lima Universidade Estadual de Montes Claros, Postgraduate Program in Biotechnology, Bioprocess Development Laboratory, Montes Claros, MG, Brazil. https://orcid.org/0009-0007-9465-1195
  • Ivan Pires de Oliveira Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil https://orcid.org/0000-0003-1020-4376
  • Gustavo Leal Teixeira Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0000-0001-7293-0790
  • Bruna Mara Aparecida de Carvalho Mesquita Universidade Estadual de Montes Claros, Postgraduate Program in Biotechnology, Bioprocess Development Laboratory, Montes Claros, MG, Brazil. e Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0000-0001-8980-8599
  • Gabriela da Rocha Lemos Mendes Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0000-0001-6432-0239
  • Igor Viana Brandi Universidade Estadual de Montes Claros, Postgraduate Program in Biotechnology, Bioprocess Development Laboratory, Montes Claros, MG, Brazil. e Universidade Federal de Minas Gerais, Institute of Agricultural Sciences, Montes Claros, MG, Brazil. https://orcid.org/0000-0001-6714-7996
  • Mariana Sousa Vieira Universidade Federal de São João Del-Rei, Laboratory of Microorganism Biotechnology, Divinópolis, MG, Brazil. e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0000-0002-2764-0863
  • Renato Ramos Godoi Universidade Federal de São João Del-Rei, Laboratory of Microorganism Biotechnology, Divinópolis, MG, Brazil. e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0009-0004-4430-0897
  • Thais Paiva de Porto Souza Universidade Federal de São João Del-Rei, Laboratory of Microorganism Biotechnology, Divinópolis, MG, Brazil. e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0009-0001-3681-5733
  • Marina Quadrio Raposo Branco Rodrigues Universidade Federal de São João Del-Rei, Department of Biotechnology, São João del-Rei, MG, Brazil e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0000-0003-0302-5740
  • Daniel Bonoto Gonçalves Universidade Federal de São João Del-Rei, Department of Biotechnology, São João del-Rei, MG, Brazil e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0000-0002-8178-1026
  • Alexsandro Sobreira Galdino Universidade Federal de São João Del-Rei, Laboratory of Microorganism Biotechnology, Divinópolis, MG, Brazil. e National Institute of Science and Technology in Industrial Biotechnology, Brasília, DF, Brazil. https://orcid.org/0000-0002-8890-3030

DOI:

https://doi.org/10.5327/fst.00433

Palavras-chave:

downstream process, fermentation, animal nutrition, enzymes, cell disruption

Resumo

As fitases recombinantes produzidas em Escherichia coli tornaram-se uma alternativa ao uso de fósforo inorgânico em dietas monogástricas, reduzindo custos de produção e solo e água poluição. A melhoria da biodisponibilidade do fósforo fítico, minerais como Cu 2+ , Zn 2+ , Mn 2+ , Mg 2+ , proteínas, carboidratos e os benefícios do inositol são bem vistos pelos
especialistas na formulação de rações com níveis adequados do aditivo enzimático. Depois de ser produzido em alta densidade celular em E. coli BL21 (λDE3) em um biorreator de bancada Bioflo 3000 (5L) em meio complexo, foi recuperada a fitase recombinante de Yersinia intermedia através da coleta de células, ruptura celular em um homogeneizador de alta pressão e coleta de proteínas em duas frações em uma centrífuga. Da Análise de Variância (ANOVA), ao nível de significância de 5% nível, a influência do número de passagens e da concentração de ração na proteína total foi avaliado o conteúdo após lise mecânica, operada entre 500 e 15.000 psi. Para fração sobrenadante, o fator concentração de alimentação foi significativo e para precipitado fração, número de passagens e concentração de alimentação. O gel SDS-PAGE indica o potencial para recuperação de corpos de inclusão na fração precipitada após lise mecânica. A intensidade da banda fitase em comparação com outras proteínas no sobrenadante do lisado celular e frações precipitadas demonstraram que E. coli recombinante tem grande potencial para proteínas expressão em alta densidade celular.

Downloads

Não há dados estatísticos.

Referências

Belkova, M., Köszagová, R., & Nahálka, J. (2022). Active inclusion

bodies: The unexpected journey. The Journal of Microbiology, Biotechnology and Food Sciences, 12(1), e5951. https://doi.org/10.55251/

jmbfs.5951

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle

of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.

https://doi.org/10.1016/0003-2697(76)90527-3

Brasil (2004). Ministry of Agriculture, Livestock and Food Supply.

Secretariat of Rural Support and Cooperatives. Regulatory Instruction No. 13, November 30, 2004. Amended by Normative

Instruction No. 44, December 15, 2015. Retrieved from https://

sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.

do?method=visualizarAtoPortalMapa&chave=133040692

Castellanos-Mendoza, A., Castro-Acosta, R. M., Olvera, A., Zavala,

G., Mendoza-Vera, M., García-Hernández, E., Alagón, A., Trujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2014). Influence of pH

control in the formation of inclusion bodies during production of

recombinant sphingomyelinase-D in Escherichia coli. Microbial

Cell Factories, 13, 137. https://doi.org/10.1186/s12934-014-0137-9

De Souza, T. P. P., Cantão, L. X. S., Rodrigues, M. Q. R. B., Gonçalves,

D. B., Nagem, R. A. P., Rocha, R. E. O., Godoi, R. R., Lima, W. J. N.,

Galdino, A. S., Minardi, R. C. de M., & Lima, L. H. F. de. (2024).

Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase

in different pHs - a computational study. Journal of Biomolecular

Structure & Dynamics, 42(10), 5030-5041. https://doi.org/10.108

/07391102.2023.2223685

de Souza, T. P. P., da S Mariano, R. M., Vieira, M. S., Andrade, S. F.

V., Godoi, R. R., Goncalves, A. F. A., Naves, L. P., Lima, W. J. N.,

Goncalves, D. B., Campos-da-Paz, M., & Galdino, A. S. (2018).

Biofactories for the production of recombinant phytases and

their application in the animal feed industry. Recent Patents on

Biotechnology, 12(2), 113-125. https://doi.org/10.2174/18722083

Doran, P. M. (1995). Bioprocess Engineering Principles. Academic Press.

European Commission (2002). Regulation (Ec) No 178/2002 of the European Parliament and of the Council of 28 January 2002. General

principles and requirements of food law, establishing the European

Food Safety Authority and laying down procedures in matters of

food safety. European Commission. Retrieved from https://eur-lex.

europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R0178

Food and Drug Administration (2010). Center for Food Safety and

Applied Nutrition. Guidance for Industry Enzyme Preparations:

Recommendations for Submission of Chemical and Technological Data for Food Additive Petitions and GRAS Notices. Center

for Food Safety and Applied Nutrition. Retrieved from https://

www.fda.gov/media/79379/download#:~:text=Enzyme%20preparations%20can%20be%20regulated,GRAS%20through%20

GRAS%20affirmation%20petitions

Glitsoe, V., Ruckebusch, J.-P., & Knap, I. (2015). Innovation in enzyme development. DSM. Retrieved from https://www.dsm.com/

content/dam/dsm/anh/en_na/poultry/resources/DSM-Whitepaper_Enzymes_CTA2.pdf

Greiner, R., & Konietzny, U. (2012). Update on characteristics of commercial phytases. International Phytase Summit 2012. Retrieved

from https://www.openagrar.de/servlets/MCRFileNodeServlet/

Document_derivate_00011870/A1312.pdf

Herrmann, K. R., Brethauer, C., Siedhoff, N. E., Hofmann, I., Eyll, J.,

Davari, M. D., Schwaneberg, U., & Ruff, A. J. (2022). Evolution

of E. coli Phytase Toward Improved Hydrolysis of Inositol Tetraphosphate. Frontiers of Chemical Engineering in China, 4, 838056.

https://doi.org/10.3389/fceng.2022.838056

Huang, H., Luo, H., Yang, P., Meng, K., Wang, Y., Yuan, T., Bai, Y., &

Yao, B. (2006). A novel phytase with preferable characteristics

from Yersinia intermedia. Biochemical and Biophysical Research Communications, 350(4), 884-889. https://doi.org/10.1016/j.

bbrc.2006.09.118

Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P.,

& Lumyong, S. (2020). Bioprocess for production, characteristics,

and biotechnological applications of fungal phytases. Frontiers in

Microbiology, 11, 188. https://doi.org/10.3389/fmicb.2020.00188

Jung, G., Denèfle, P., Becquart, J., & Mayaux, J. F. (1988). High-

-cell density fermentation studies of recombinant Escherichia

coli strains expressing human interleukin-1 beta. Annales de

l’Institut Pasteur. Microbiology, 139(1), 129-146. https://doi.

org/10.1016/0769-2609(88)90100-7

Kim, J., & Kim, K. H. (2017). Effects of minimal media vs. complex

media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry, 57, 64-71. https://doi.

org/10.1016/j.procbio.2017.04.003

Lamm, R., Jäger, V. D., Heyman, B., Berg, C., Cürten, C., Krauss, U.,

Jaeger, K.-E., & Büchs, J. (2020). Detailed small-scale characterization and scale-up of active YFP inclusion body production

with Escherichia coli induced by a tetrameric coiled coil domain.

Journal of Bioscience and Bioengineering, 129(6), 730-740. https://

doi.org/10.1016/j.jbiosc.2020.02.003

Food Sci. Technol, Campinas, 45, e00433, 2025

Lemuchi, M. O., Vieira, M. S., Granjeiro, P. A., Silva, J. A. da, Lima, W.

J. N., Gonçalves, D. B., Galdino, A. S., Comar, M., Jr, & Taranto,

A. G. (2013). Uso de modelagem comparativa na determinação

estrutural de fitase de Yersinia. Biochemistry and Biotechnology

Reports, 2(1), 25. https://doi.org/10.5433/2316-5200.2013v2n1p25

Nezhad, N. G., Raja Abd Rahman, R. N. Z., Normi, Y. M., Oslan, S.

N., Shariff, F. M., & Leow, T. C. (2020). Integrative structural and

computational biology of phytases for the animal feed industry.

Catalysts, 10(8), 844. https://doi.org/10.3390/catal10080844

Peternel, S., & Komel, R. (2010). Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microbial Cell

Factories, 9, 66. https://doi.org/10.1186/1475-2859-9-66

Rao, D. E. C. S., Rao, K. V., & Reddy, V. D. (2008). Cloning and

expression of Bacillus phytase gene (phy) in Escherichia coli

and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology, 105(4), 1128-1137. https://doi.

org/10.1111/j.1365-2672.2008.03833.x

Rizwanuddin, S., Kumar, V., Naik, B., Singh, P., Mishra, S., Rustagi, S.,

& Kumar, V. (2023). Microbial phytase: Their sources, production,

and role in the enhancement of nutritional aspects of food and feed

additives. Journal of Agriculture and Food Research, 12, 100559.

https://doi.org/10.1016/j.jafr.2023.100559

Rothwell, S. A., Doody, D. G., Johnston, C., Forber, K. J., Cencic, O.,

Rechberger, H., & Withers, P. J. A. (2020). Phosphorus stocks and

flows in an intensive livestock dominated food system. Resources,

Conservation and Recycling, 163, 105065. https://doi.org/10.1016/j.

resconrec.2020.105065

Santos, C. A., Beloti, L. L., Toledo, M. A. S., Crucello, A., Favaro, M.

T. P., Mendes, J. S., Santiago, A. S., Azzoni, A. R., & Souza, A. P.

(2012). A novel protein refolding protocol for the solubilization

and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coli.

Protein Expression and Purification, 82(2), 284-289. https://doi.

org/10.1016/j.pep.2012.01.010

Simpson, R. J. (2006). SDS-PAGE of Proteins. CSH Protocols, 2006(1),

pdb.prot4313. https://doi.org/10.1101/pdb.prot4313

van Hee, P., Middelberg, A. P. J., van der Lans, R. G. J. M., & van der

Wielen, L. A. M. (2004). Quantification of solid cell material by

detection of membrane-associated proteins and peptidoglycan.

Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 807(1), 111-119. https://doi.org/10.1016/j.

jchromb.2004.01.052

Vieira, M. S., Pereira, V. V., da Cunha Morales Álvares, A., Nogueira,

L. M., Lima, W. J. N., Granjeiro, P. A., Gonçalves, D. B., Campos-

-da-Paz, M., de Freitas, S. M., & Galdino, A. S. (2019). Expression and biochemical characterization of a yersinia intermedia

phytase expressed in Escherichia coli. Recent Patents on Food,

Nutrition & Agriculture, 10(2), 131-139. https://repositorio.ufmg.

br/handle/1843/10.2174/2212798410666181205114153

Withers, P. J. A., Rodrigues, M., Soltangheisi, A., de Carvalho, T. S., Guilherme, L. R. G., Benites, V. de M., Gatiboni, L. C., de Sousa, D. M.

G., Nunes, R. de S., Rosolem, C. A., Andreote, F. D., Oliveira, A. de,

Jr, Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific

Reports, 8(1), 2537. https://doi.org/10.1038/s41598-018-20887-z

Wong, H. H., O’Neill, B. K., & Middelberg, A. P. (1997). Cumulative

sedimentation analysis of Escherichia coli debris size. Biotechnology and Bioengineering, 55(3), 556-564. https://doi.org/10.1002/

(sici)1097-0290(19970805)55:3%3C556::aid-bit13%3E3.0.co;2-e

Yang, D., Park, S. Y., Park, Y. S., Eun, H., & Lee, S. Y. (2020). Metabolic

engineering of Escherichia coli for natural product biosynthesis.

Trends in Biotechnology, 38(7), 745-765. https://doi.org/10.1016/j.

tibtech.2019.11.007

Yang, Y., & Sha, M. A. (2019). A beginner’s guide to bioprocess modes-batch, fed-batch, and continuous fermentation. Eppendorf Inc, 408, 1-16.

Yee, L., & Blanch, H. W. (1992). Recombinant protein expression in high

cell density fed-batch cultures of Escherichia coli. Bio/technology,

(12), 1550-1556. https://doi.org/10.1038/nbt1292-1550

Downloads

Publicado

2025-04-30

Como Citar

Lima, W. J. N., Ribeiro, R. M. R., Soares , S. B., Mendes , Q. Q. N., Soares, J. P., Neves, A. F. das N., Soares , N. Z. D., Mendes , L. R., Lima , I. M., Oliveira , I. P. de, Teixeira, G. L., Mesquita, B. M. A. de C., Mendes , G. da R. L., Brandi , I. V., Vieira , M. S., Godoi , R. R., Souza , T. P. de P., Rodrigues , M. Q. R. B., Gonçalves, D. B., & Galdino , A. S. (2025). The production and recovery analysis of a promising recombinant phytase from Yersinia intermedia expressed in Escherichia coli and its potential use in biotechnology. Food Science and Technology, 45. https://doi.org/10.5327/fst.00433

Edição

Seção

Artigos Originais