Optimization of bioprocesses of Lactiplantibacillus plantarum UFSJP2 with antioxidant activity and its viability in graviola (Annona muricata) sorbet
DOI:
https://doi.org/10.5327/fst.00373%20Palavras-chave:
probiotics, bioprocess, non-dairyResumo
Functional foods within a varied diet at effective dosages may confer health benefits that surpass the scope of basic nutrition, with probiotics assuming a significant role in this domain. The use of sorbet enriched with probiotics is an alternative to dairy products. However, the viable bioprocessing for probiotic production presents substantial challenges. The aim of this study was to optimize the bioprocesses of Lactiplantibacillus plantarum UFSJP2 and to evaluate its antioxidant activity and viability in graviola (Annona muricata) sorbet. The optimized production of UFSJP2 biomass was 787% greater than non-optimized processes, resulting in a yield of 3.7 x 1010 CFU.mL-1 under conditions comprising 10.55 g.L-1 yeast extract, 10 g.L-1 peptone, and 0.16 g.L-1 manganese sulfate. The aggregated spherical structure observed in SEM may have a certain protective effect. Antioxidant activity assays revealed efficacies of 79% and 46% for intact and lysed cells, respectively. The survival rate of the UFSJP2 strain in the presence of hydrogen peroxide was observed at 77.5% (1.0 mM for 8 h). Notably, there was no diminution in the number of viable cells of UFSJP2 in graviola sorbet in 30 days. These results underscore a cost-effective strategy for probiotic production and for enhancing viability within plant-based matrices.
Downloads
Referências
Amorim, N. C. S., Amorim, E. L. C., Kato, M. T., & Florencio, L. (2018). The effect of methanogenesis inhibition, inoculum and substrate concentration on hydrogen and carboxylic acids production from cassava wastewater. Biodegradation, 29(1), 41-58. https://doi.org/10.1007/s10532-017-9812-y
Bahramparvar, M., & Mazaheri Tehrani, M. (2011). Application and functions of stabilizers in ice cream. Food Reviews International, 27(4), 389-407. https://doi.org/10.1080/87559129.2011.563399
Baranyi, J., Pin, C., & Ross, T. (1999). Validating and comparing predictive models. International Journal of Food Microbiology, 48(3), 159-166. https://doi.org/10.1016/s0168-1605(99)00035-5
Begum, P. S., Madhavi, G., Rajagopal, S., & Anuradha, R. (2017). Probiotics as functional foods: potential effects on human health and its impact on neurological diseases. International Journal of Nutrition, Pharmacology, Neurological Diseases, 7(1), 23-34. https://doi.org/10.4103/ijnpnd.ijnpnd_90_16
Brown, L., Caligiuri, S. P. B., Brown, D., & Pierce, G. N. (2018). Clinical trials using functional foods provide unique challenges. Journal of Functional Foods, 45, 233-238. https://doi.org/10.1016/j.jff.2018.01.024
Buchmeier, N., Bossie, S., Chen, C. Y., Fang, F. C., Guiney, D. G., & Libby, S. J. (1997). SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infection and Immunity, 65(9), 3725-3730. https://doi.org/10.1128/iai.65.9.3725-3730.1997
Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: characterization and treatment. Science of the Total Environment, 445-446, 385-396. https://doi.org/10.1016/j.scitotenv.2012.12.038
Cassidy, Y. M., McSorley, E. M., & Allsopp, P. J. (2018). Effect of soluble dietary fibre on postprandial blood glucose response and its potential as a functional food ingredient. Journal of Functional Foods, 46, 423-439. https://doi.org/10.1016/j.jff.2018.05.019
Colares, H. C., Guimarães, G. M., Couto, C. A. P., Santos, L. F., & Freire, D. M. G. (2021). Optimization of bioprocess of Schleiferilactobacillus harbinensis Ca12 and its viability in frozen Brazilian berries (Açai, Euterpe oleracea Mart.). Brazilian Journal of Microbiology, 52(4), 2271-2285. https://doi.org/10.1007/s42770-021-00559-3
Di Cerbo, A., Palmieri, B., Aponte, M., Morales-Medina, J. C., & Iannitti, T. (2016). Mechanisms and therapeutic effectiveness of lactobacilli. Journal of Clinical Pathology, 69(3), 187-203. https://doi.org/10.1136/jclinpath-2015-202976
Errayes, A. O., Abdussalam-Mohammed, W., & Darwish, M. O. (2020). Review of phytochemical and medical applications of Annona muricata Fruits. Journal of Chemical Reviews, 2(1), 70-79. https://doi.org/10.33945/SAMI/JCR.2020.1.5
Ficoseco, C. A., Mansilla, F. I., Maldonado, N. C., & Vignolo, G. M. (2018). Safety and growth optimization of lactic acid bacteria isolated from feedlot cattle for probiotic formula design. Frontiers in Microbiology, 9, 2220. https://doi.org/10.3389/fmicb.2018.02220
Fu, J., Sharma, U., Sparling, R., & Levin, D. B. (2014). Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Canadian Journal of Microbiology, 60(7), 461-468. https://doi.org/10.1139/cjm-2014-0108
Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & AEl-Shemy, H. (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific Journal of Tropical Medicine, 7(Suppl. 1), S355-S363. https://doi.org/10.1016/S1995-7645(14)60258-3
Granato, D., Nunes, D. S., & Barba, F. J. (2017). An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: a proposal. Trends in Food Science & Technology, 62, 13-22. https://doi.org/10.1016/j.tifs.2016.12.010
Guimarães, G. M., Soares, L. A., Silva, T. N. L., Lopes, R. M., & Freire, D. M. G. (2020). Cocoa pulp as alternative food matrix for probiotic delivery. Recent Patents on Food, Nutrition & Agriculture, 11(1), 82-90. https://doi.org/10.2174/2212798410666190408151826
Hajavi, J., Esmaeili, S., Varasteh, A., & Sankian, M. (2019). The immunomodulatory role of probiotics in allergy therapy. Journal of Cellular Physiology, 234(3), 2386-2398. https://doi.org/10.1002/jcp.27263
Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 4(11A), 73-87. https://doi.org/10.4236/fns.2013.411A010
Hoffmann, A., Kleniewska, P., & Pawliczak, R. (2021). Antioxidative activity of probiotics. Archives of Medical Science, 17(3), 792-804. https://doi.org/10.5114/aoms.2019.89894
Kim, S., Lee, J. Y., Jeong, Y., & Kang, C.-H. (2022). Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation, 8(1), 29. https://doi.org/10.3390/fermentation8010029
Lee, J., Hwang, K., Chung, M., Cho, D., Park, C. (2005). Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. Journal of Food Science, 70(8), m388–m391. https://doi.org/10.1111/j.1365-2621.2005.tb11524.x
Li, L., & Ma, Y. (2014). Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis. Journal of Dairy Science, 97(10), 5975-5982. https://doi.org/10.3168/jds.2014-8047
Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., & Li, D. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
Machado, C. C. da S., Fernandes, M. T. C., Mauro, C. S. I., Farinazzo, F. S., Prudencio, S. H., & Garcia, S. (2021). Probiotic Juçara and banana sorbet: cell viability, antioxidant activity during storage and sensory acceptability by children. Journal of Culinary Science & Technology, 19(5), 460-474. https://doi.org/10.1080/15428052.2020.1787287
Maldonado, N. C., Ficoseco, C. A., Mansilla, F. I., & Vignolo, G. M. (2018). Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livestock Science, 212, 99-110. https://doi.org/10.1016/j.livsci.2018.04.003
Manzoor, A., Qazi, J. I., Haq, I. U., & Mukhtar, H. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering, 11, 17. https://doi.org/10.1186/s13036-017-0059-2
Marinho, J. F. U., da Silva, M. P., Mazzocato, M. C., Tulini, F. L., & Favaro-Trindade, C. S. (2019). Probiotic and synbiotic sorbets produced with Jussara (Euterpe edulis) pulp: evaluation throughout the storage period and effect of the matrix on probiotics exposed to simulated gastrointestinal fluids. Probiotics and Antimicrobial Proteins, 11(1), 264-272. https://doi.org/10.1007/s12602-017-9346-y
Nanjaiah, M., Rastogi, N. K., & Devappa, S. (2024). Study of the probiotic properties of Lacticaseibacillus casei subsp. casei NCIM 5752 and the optimization of whey-based media for the production of its biomass using response surface methodology. 3 Biotech, 14(2), 49. https://doi.org/10.1007/s13205-023-03899-z
Nguyen, B. T., Bujna, E., Fekete, N., Tran, C. D., Rezessy-Szabo, J. M., & Hoschke, Á. (2019). Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Frontiers in Nutrition, 6, 54. https://doi.org/10.3389/fnut.2019.00054
Oak, S. J., & Jha, R. (2019). The effects of probiotics in lactose intolerance: A systematic review. Critical Reviews in Food Science and Nutrition, 59(11), 1675-1683. https://doi.org/10.1080/10408398.2018.1425977
Panesar, P., Kennedy, J., Gandhi, D., & Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105(1), 1-14. https://doi.org/10.1016/j.foodchem.2007.03.035
Pescuma, M., de Valdez, G. F., & Mozzi, F. (2015). Whey-derived valuable products obtained by microbial fermentation. Applied Microbiology and Biotechnology, 99(15), 6183-6196. https://doi.org/10.1007/s00253-015-6766-z
Pineda-Ramírez, N., Calzada, F., Alquisiras-Burgos, I., Medina-Campos, O. N., Pedraza-Chaverri, J., Ortiz-Plata, A., Pinzón Estrada, E., Torres, I., & Aguilera, P. (2020). Antioxidant properties and protective effects of some species of the Annonaceae, Lamiaceae, and Geraniaceae families against neuronal damage induced by excitotoxicity and cerebral ischemia. Antioxidants, 9(3), 253. https://doi.org/10.3390/antiox9030253
Ploll, U., Petritz, H., & Stern, T. (2020). A social innovation perspective on dietary transitions: Diffusion of vegetarianism and veganism in Austria. Environmental Innovation and Societal Transitions, 36, 164-176. https://doi.org/10.1016/j.eist.2020.07.001
Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610
Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Applied Microbiology and Biotechnology, 103(23-24), 9263-9275. https://doi.org/10.1007/s00253-019-10175-9
Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030
Wang, A., & Zhong Q. (2023). Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13287. https://doi.org/10.1111/1541-4337.13287
Wang, A. N., Yi, X. W., Yu, H. F., Dong, B., & Qiao, S. Y. (2009). Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. Journal of Applied Microbiology, 107(4), 1140-1148. https://doi.org/10.1111/j.1365-2672.2009.04294.x
Wang, Y., Liu, X., Shao, Y., Guo, Y., Gu R., & Wang, W. (2024). Cheese whey protein and blueberry juice mixed fermentation enhance the freeze-resistance of lactic acid bacteria in the freeze-drying process. Foods, 13(14), 2260. https://doi.org/10.3390/foods13142260
Williams, J., McKune, A. J., Georgousopoulou, E. N., Mellor, D. D., & Naumovski, N. (2020). The effect of L-theanine incorporated in a functional food product (Mango sorbet) on physiological responses in healthy males: a pilot randomised controlled trial. Foods, 9(3), 371. https://doi.org/10.3390/foods9030371
Williams, J., McKune, A. J., & Naumovski, N. (2023). Sorbets as functional food products, unexplored food matrices, their challenges, and advancements. Applied Sciences, 13(21), 11945. https://doi.org/10.3390/app132111945
Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science and Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025
Zacharof, M.-P., & Lovitt, R. W. (2013). Modelling and simulation of cell growth dynamics, substrate consumption, and lactic acid production kinetics of Lactococcus lactis. Biotechnology and Bioprocess Engineering, 18, 52-64. https://doi.org/10.1007/s12257-012-0477-4
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107