Physicochemical and microbiological quality of a fermented soybean beverage: effect of modified cassava starches
DOI:
https://doi.org/10.5327/fst.00262%20Palavras-chave:
modified starch, physicochemical properties, syneresis, fermenting microorganisms, probioticsResumo
Intensive heat treatments of fermented soybean beverages affect their quality, which can be prevented by using modified cassava starches. This study aimed to evaluate the influence of modified cassava starch on the quality properties of a fermented soybean beverage (pH, acidity, soluble solids, syneresis, and microbiological quality) by a sensory acceptance test. The soybean beverage fermentation was carried out using a commercial culture of starter microorganisms and probiotics. Three modified cassava starches were added to the samples: octenyl succinic anhydride (OSA), acetylated distarch adipate (ADA), cross-linked-substituted starch (mixed), and a native starch at 1% concentration. They were stored for 3 weeks at 4ºC. The analyses showed a decrease in pH and an increase in acidity due to post-fermentation processes. The syneresis showed significant differences concerning the sample with native starch, but not among the other treatments with modified starches. The microbiological quality was below the regulatory acceptance limit, and the CFU/mL of probiotics was higher than 106. The treatment with OSA and mixed starch had the highest general acceptance in the sensory test.
Downloads
Referências
Aderibigbe, A. S., Cowieson, A. J., Ajuwon, K. M., & Adeola, O. (2021). Contribution of purified soybean trypsin inhibitor and exogenous protease to endogenous amino acid losses and mineral digestibility. Poultry Science, 100(12), 101486. https://doi.org/10.1016/j.psj.2021.101486
Altuna, L., Herrera, M. L., & Foresti, M. L. (2018). Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocolloids, 80, 97-110. https://doi.org/10.1016/j.foodhyd.2018.01.032
AOAC (2012). Official Methods of Analysis of AOAC International. AOAC International.
Barco Coro, L. M. (2017). Elaboración de bebida fermentada a base del extracto de quinua (Chenopodium quinoa Willd) y soya (Glycine max) con la aplicación de probióticos. Retrieved from https://bdigital.zamorano.edu/bitstream/11036/6029/1/AGI-2017-006.pdf
Brunelle, S. (2016). Validation of microbiological methods for food. In Statistical Aspects of the Microbiological Examination of Foods (3ª ed., pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-12-803973-1/00013-9
Cui, L., Chang, S. K. C., & Nannapaneni, R. (2021). Comparative studies on the effect of probiotic additions on the physicochemical and microbiological properties of yoghurt made from soymilk and cow’s milk during refrigeration storage (R2). Food Control, 119, 107474. https://doi.org/10.1016/j.foodcont.2020.107474
Desai, A., Small, D., McGill, A., & Shah, N. (2002). Metabolism Milk and of Raffinose of n-Hexanal Stachyose in Reconstituted Skim and Pentanal in Soymilk by Bifidobacteria Probiotic functional foods are becoming increasingly popular in the diets of people in Australia and in the consumption of products con. Bioscience Microflora, 21(4), 245-250. https://doi.org/10.12938/bifidus1996.21.245
Drunkler, N. L., Leite, R. S., Mandarino, J. M. G., Ida, E. I., & Demiate, I. M. (2012). Cassava starch as a stabilizer of soy-based beverages. Food Science and Technology International, 18(5), 489-499. https://doi.org/10.1177/1082013211433072
Farnand, S. P. (2003). Using ΔE metrics for measuring color variation in hard-copy pictorial images. Color Imaging VIII: Processing, Hardcopy, and Applications, 5008, 109. https://doi.org/10.1117/12.474873
Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48, 387-399. https://doi.org/10.1016/j.jff.2018.07.039
Han, X., Yang, Z., Jing, X., Yu, P., Zhang, Y., Yi, H., & Zhang, L. (2016). Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. BioMed Research International, 2016, 7945675. https://doi.org/10.1155/2016/7945675
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Hou, J. W., Yu, R. C., & Chou, C. C. (2000). Changes in some components of soymilk during fermentation with bifidobacteria. Food Research International, 33(5), 393-397. https://doi.org/10.1016/S0963-9969(00)00061-2
Hyrslova, I., Krausova, G., Smolova, J., Stankova, B., Branyik, T., Malinska, H., Huttl, M., Kana, A., Curda, L., & Doskocil, I. (2021). Functional properties of chlorella vulgaris, colostrum, and bifidobacteria, and their potential for application in functional foods. Applied Sciences, 11(11), 5264. https://doi.org/10.3390/app11115264
Joon, R., Mishra, S. K., Brar, G. S., Singh, P. K., Mishra, S. K., & Panwar, H. (2017). Instrumental texture and syneresis analysis of yoghurt prepared from goat and cow milk. Pharma Innovation Journal, 6(7), 971-974.
Kõll, P., Mändar, R., Marcotte, H., Leibur, E., Mikelsaar, M., & Hammarström, L. (2008). Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiology and Immunology, 23(2), 139-147. https://doi.org/10.1111/j.1399-302X.2007.00402.x
Lee, M., Hong, G. E., Zhang, H., Yang, C. Y., Han, K. H., Mandal, P. K., & Lee, C. H. (2015). Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10. Food Science and Biotechnology, 24(2), 537-544. https://doi.org/10.1007/s10068-015-0070-7
Leon, L., & Joseline, N. (2017). Evaluación fisicoquímica, químico proximal y sensorial de la leche de soya (Glycine max) fermnetada con cultivo Kéfir [thesis].
Li, C., Li, W., Chen, X., Feng, M., Rui, X., Jiang, M., & Dong, M. (2014). Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT - Food Science and Technology, 57(2), 477-485. https://doi.org/10.1016/j.lwt.2014.02.025
Liu, L., Huang, Y., Zhang, X., Zeng, J., Zou, J., Zhang, L., & Gong, P. (2023). Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocolloids, 136(part A), 108252. https://doi.org/10.1016/j.foodhyd.2022.108252
Mani-López, E., Palou, E., & López-Malo, A. (2014). Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science, 97(5), 2578-2590. https://doi.org/10.3168/jds.2013-7551
Miremadi, F., Ayyash, M., Sherkat, F., & Stojanovska, L. (2014). Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. Journal of Functional Foods, 9(1), 295-305. https://doi.org/10.1016/j.jff.2014.05.002
Ovando-Martinez, M., Whitney, K., Ozsisli, B., & Simsek, S. (2017). Physicochemical Properties of Octenyl Succinic Esters of Cereal, Tuber and Root Starches. Journal of Food Processing and Preservation, 41(1), e12872. https://doi.org/10.1111/jfpp.12872
Rodríguez-Ruiz, J. D., Rodríguez-Sandoval, E., & Hernández, M. S. (2023). Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agronomia Colombiana, 41(1). https://doi.org/10.15446/agron.colomb.v41n1.106936
Santos, D. C. dos, Oliveira Filho, J. G. de, Santana, A. C. A., Freitas, B. S. M. de, Silva, F. G., Takeuchi, K. P., & Egea, M. B. (2019). Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. LWT, 104, 30-37. https://doi.org/10.1016/j.lwt.2019.01.030
Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9(2), 111-122. https://doi.org/10.1007/s12602-017-9264-z
Sozzi, T., Brigidi, P., Mignot, O., & Matteuzzi, D. (1990). Use of dicloxacillin for the isolation and counting of Bifidobacteria from dairy products. Le Lait, 70(4), 357-361. https://doi.org/10.1051/lait:1990427
Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905-920. https://doi.org/10.1016/j.carbpol.2012.09.040
Tabasco, R., Paarup, T., Janer, C., Peláez, C., & Requena, T. (2007). Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 17(9), 1107-1114. https://doi.org/10.1016/j.idairyj.2007.01.010
Verni, M., Demarinis, C., Rizzello, C. G., & Baruzzi, F. (2020). Design and characterization of a novel fermented beverage from lentil grains. Foods, 9(7), 893. https://doi.org/10.3390/foods9070893
Vila-Real, C., Pimenta-Martins, A., Mbugua, S., Hagrétou, S. L., Katina, K., Maina, N. H., Pinto, E., & Gomes, A. M. P. (2022). Novel synbiotic fermented finger millet-based yoghurt-like beverage: Nutritional, physicochemical, and sensory characterization. Journal of Functional Foods, 99, 105324. https://doi.org/10.1016/j.jff.2022.105324
Wang, Z., Wang, S., Xu, Q., Kong, Q., Li, F., Lu, L., Xu, Y., & Wei, Y. (2023). Synthesis and Functions of Resistant Starch. Advances in Nutrition, 14(5), 1131-1144. https://doi.org/10.1016/j.advnut.2023.06.001
Wei, Q., Zheng, H., Han, X., Zheng, C., Huang, C., Jin, Z., Li, Y., & Zhou, J. (2023). Octenyl succinic anhydride modified starch with excellent emulsifying properties prepared by selective hydrolysis of supramolecular immobilized enzyme. International Journal of Biological Macromolecules, 232, 123383. https://doi.org/10.1016/j.ijbiomac.2023.123383
Wen, J. J., Li, M. Z., Hu, J. L., Tan, H. Z., & Nie, S. P. (2022). Resistant starches and gut microbiota. Food Chemistry, 387, 132895. https://doi.org/10.1016/j.foodchem.2022.132895
Yuan, S. H., & Chang, S. K. C. (2010). Trypsin inhibitor activity in laboratory-produced and commercial soymilk. American Chemical Society. Retrieved from https://www.researchgate.net/publication/287302665_Trypsin_inhibitor_activity_in_laboratory-produced_and_commercial_soymilk
Zhang, D., Lin, Z., Lei, W., & Zhong, G. (2020). Synergistic effects of acetylated distarch adipate and sesbania gum on gelatinization and retrogradation of wheat starch. International Journal of Biological Macromolecules, 156, 171-179. https://doi.org/10.1016/j.ijbiomac.2020.03.256
Zhang, X., Zhang, C., Xiao, L., Wang, S., Wang, X., Ma, K., Ji, F., Azarpazhooh, E., Ajami, M., Rui, X., & Li, W. (2023). Effects of Lactiplantibacillus plantarum with different phenotypic features on the nutrition, flavor, gel properties, and digestion of fermented soymilk. Food Bioscience, 55, 103026. https://doi.org/10.1016/j.fbio.2023.103026
Zhu, X., Liu, J., Liu, H., & Yang, G. (2020). Soybean oligosaccharide, stachyose, and raffinose in broilers diets: effects on odor compound concentration and microbiota in cecal digesta. Poultry Science, 99(7), 3532-3539. https://doi.org/10.1016/j.psj.2020.03.034
Zhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science and Technology, 105, 43-55. https://doi.org/10.1016/j.tifs.2020.08.019