Effect of ferulic acid grafted walnut shell hemicellulose B on the flavor of traditional pickle fermentation

Autores

  • Wenming JIANG Chongqing Chemical Industry Vocational College, Chongqing, China. https://orcid.org/0000-0002-0627-856X
  • Chunyan PENG Chongqing Jiangbei District Disease Control Center, Chongqing, China.
  • Zemei GUO Chongqing Jiangbei District Disease Control Center, Chongqing, China.
  • Jingxia CHEN Chongqing Chemical Industry Vocational College, Chongqing, China.
  • Yong ZHAO Chongqing Jiangbei District Disease Control Center, Chongqing, China.
  • Fang LI Chongqing Jiangbei District Disease Control Center, Chongqing, China.

DOI:

https://doi.org/10.5327/fst.00149

Palavras-chave:

ferulic acid, walnut shell, hemicellulose B, flavor

Resumo

To improve the flavor of traditional pickles, hemicellulose B (HCB) was extracted from walnut shell, the protein of which was detected by ultraviolet-visible (UV-Vis) light full wavelength scanning. Then ferulic acid was grafted in the absence of oxygen, and UV-Vis and Fourier transform infrared (FT-IR) were used to verify the branching. HCB and ferulic acid grafted hemicellulose B (FHB) were added to pickles, respectively, and the aroma substances were detected by gas chromatography and mass spectrum (GC-MS) to evaluate the effect of FHB on the aroma substances of pickles. The results showed that the protein in HCB was basically removed after UV-Vis scanning. After UV-Vis and FT-IR identification, FHB was obtained. The GC-MS analysis of aroma substances showed that HCB caused more derivatives of aroma substances in the fermentation process of pickles, and FHB made pickles produce more unique aroma substances during fermentation. This study provided a certain research basis for improving the flavor substances of traditional pickles.

Downloads

Não há dados estatísticos.

Referências

Antonopoulou, I., Sapountzaki, E., Rova, U., & Christakopoulos, P. (2022). Ferulic acid from plant biomass: A phytochemical with promising antiviral properties. Frontiers in Nutrition, 8, 777576. https://doi.org/10.3389/fnut.2021.777576

Carius, B., Silva, H., Silva, A. M., & Pinto, D. C. (2022). Chemical Profiling of Limonium vulgare Mill. Using UHPLC-DAD-ESI/MS2 and GC-MS Analysis. Applied Sciences, 12(13), 6384. https://doi.org/10.3390/app12136384

Chen, C., Zhao, X., Wang, X., Wang, B., Li, H., Feng, J., & Wu, A. (2021). Mutagenesis of UDP‐xylose epimerase and xylan arabinosyl‐transferase decreases arabinose content and improves saccharification of rice straw. Plant Biotechnology Journal, 19(5), 863-865. https://doi.org/10.1111/pbi.13552

Fröhlich, A. C., Bazzo, G. C., Stulzer, H. K., & Parize, A. L. (2022). Synthesis and physico-chemical characterization of quaternized and sulfated xylan-derivates with enhanced microbiological and antioxidant properties. Biocatalysis and Agricultural Biotechnology, 43, 102416. https://doi.org/10.1016/j.bcab.2022.102416

Guo, X., Schwab, W., Ho, C. T., Song, C., & Wan, X. (2022). Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chemistry, 376, 131933. https://doi.org/10.1016/j.foodchem.2021.131933

Haokok, C., Lunprom, S., Reungsang, A., & Salakkam, A. (2023). Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis through simultaneous saccharification and co-fermentation process. Heliyon, 9(7), e17935. https://doi.org/10.1016/j.heliyon.2023.e17935

He, S., Guo, Y., Zhao, J., Xu, X., Song, J., Wang, N., & Liu, Q. (2019). Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. International Journal of Hyperthermia, 35(1), 112-121. https://doi.org/10.1080/02656736.2018.1483534

Hossain, M. S., Shahiduzzaman, M., Rahim, M. A., Paul, M., Sarkar, R., Chaity, F. S., Uddin, M. N., Rana, G. M. M., Yeasmin, M. S., Kibria, A., & Islam, S. (2023). Bioactive properties and organosulfur compounds profiling of newly developed garlic varieties of Bangladesh. Food Chemistry: X, 17, 100577. https://doi.org/10.1016/j.fochx.2023.100577

Hu, B., Pan, J., Chen, L., Zheng, X., & Li, B. (2019). Effect of ferulic acid treatment on postharvest quality and blue mold in tomato fruit. Storage and Process, 19(1), 14-24.

Kose, T., Sharp, P. A., & Latunde-Dada, G. O. (2022). Upregulation of Nrf2 Signalling and the Inhibition of Erastin-Induced Ferroptosis by Ferulic Acid in MIN6 Cells. International Journal of Molecular Sciences, 23(24), 15886. https://doi.org/10.3390/ijms232415886

Lee, M., Song, J. H., Choi, E. J., Yun, Y. R., Lee, K. W., & Chang, J. Y. (2021). UPLC-QTOF-MS/MS and GC-MS characterization of phytochemicals in vegetable juice fermented using lactic acid bacteria from kimchi and their antioxidant potential. Antioxidants, 10(11), 1761. https://doi.org/10.3390/antiox10111761

Li, L., Zhong, Y., Ma, Z., Yang, C., Wei, H., Chen, L., Li, C., Wu, D., Rong, M. Z., & Li, Y. (2018). Methyl ferulic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway. International Journal of Oncology, 53(1), 225-236. https://doi.org/10.3892/ijo.2018.4379

Liu, X., Lin, Q., Yan, Y., Peng, F., Sun, R., & Ren, J. (2019). Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Current Medicinal Chemistry, 26(14), 2430-2455. https://doi.org/10.2174/0929867324666170705113657

Ma, L., Tan, Y., Chen, X., Ran, Y., Tong, Q., Tang, L., Su, W., Wang, X., & Li, X. (2022). Injectable oxidized alginate/carboxylmethyl chitosan hydrogels functionalized with nanoparticles for wound repair. Carbohydrate Polymers, 293, 119733. https://doi.org/10.1016/j.carbpol.2022.119733

Ma, Y., Li, B., Zhang, X., Wang, C., & Chen, W. (2022). Production of gluconic acid and its derivatives by microbial fermentation: Process improvement based on integrated routes. Frontiers in Bioengineering and Biotechnology, 10, 864787.

Moghaddam‐Manesh, M., Ghazanfari, D., Sheikhhosseini, E., & Akhgar, M. (2019). MgO‐Nanoparticle‐Catalyzed Synthesis and Evaluation of Antimicrobial and Antioxidant Activity of New Multi‐Ring Compounds Containing Spiro [indoline‐3, 4′‐[1, 3] dithiine]. ChemistrySelect, 4(31), 9247-9251. https://doi.org/10.1002/slct.201900935

Ou, S., & Kwok, K. C. (2004). Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261-1269. https://doi.org/10.1002/jsfa.1873

Rodríguez-Pérez, C., Quirantes-Piné, R., Amessis-Ouchemoukh, N., Madani, K., Segura-Carretero, A., & Fernández-Gutierrez, A. (2013). A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. Journal of Pharmaceutical and Biomedical Analysis, 77, 167-174. https://doi.org/10.1016/j.jpba.2013.01.026

Saulnier, L., & Thibault, J. F. (1999). Ferulic acid and diferulic acids as components of sugar‐beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396-402. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3%3C396::AID-JSFA262%3E3.0.CO;2-B

Seong, H., Bae, J. H., Seo, J. S., Kim, S. A., Kim, T. J., & Han, N. S. (2019). Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. Journal of Functional Foods, 57, 408-416. https://doi.org/10.1016/j.jff.2019.04.014

Soares-Castro, P., Soares, F., Reis, F., Lino-Neto, T., & Santos, P. M. (2023). Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Applied Microbiology and Biotechnology, 107(16), 5209-5224. https://doi.org/10.1007/s00253-023-12650-w

Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 40(2), 92-100. https://doi.org/10.3164%2Fjcbn.40.92

Sun, D., Zhao, Z., Spiegel, S., Liu, Y., Fan, J., Amrollahi, P., & Hu, T. Y. (2021). Dye-free spectrophotometric measurement of nucleic acid-to-protein ratio for cell-selective extracellular vesicle discrimination. Biosensors and Bioelectronics, 179, 113058. https://doi.org/10.1016/j.bios.2021.113058

Thirukumaran, P., Sathiyamoorthi, R., Shakila Parveen, A., & Sarojadevi, M. (2016). New benzoxazines from renewable resources for green composite applications. Polymer Composites, 37(2), 573-582. https://doi.org/10.1002/pc.23214

Wang, Y. L., Wang, W. K., Wu, Q. C., & Yang, H. J. (2022). The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. Animal Nutrition, 9, 335-344. https://doi.org/10.1016/j.aninu.2022.02.003

Yang, J., Du, Y., Wen, Y., Li, T., & Hu, L. (2003). Sulfation of Chinese lacquer polysaccharides in different solvents. Carbohydrate Polymers, 52(4), 397-403. https://doi.org/10.1016/S0144-8617(02)00330-2

Zhang, C., Jiang, Q., Liu, A., Wu, K., Yang, Y., Lu, J., & Wang, H. (2020). The bead-like Li3V2 (PO4) 3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 237, 116134. https://doi.org/10.1016/j.carbpol.2020.116134

Zhang, R., & Jia, W. (2023). Deciphering the competitive binding interaction of β-lactoglobulin with benzaldehyde and vanillic acid via high-spatial-resolution multi-spectroscopic. Food Hydrocolloids, 141, 108724. https://doi.org/10.1016/j.foodhyd.2023.108724

Zhao, L., Xue, L., Li, B., Wang, Q., Li, B., Lu, S., & Fan, Q. (2018). Ferulic acid reduced histamine levels in the smoked horsemeat sausage. International Journal of Food Science & Technology, 53(10), 2256-2264. https://doi.org/10.1111/ijfs.13814

Zheng, Y., You, X., Guan, S., Huang, J., Wang, L., Zhang, J., & Wu, J. (2019). Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Advanced Functional Materials, 29(15), 1808646. https://doi.org/10.1002/adfm.201808646

Downloads

Publicado

2024-05-03

Como Citar

JIANG, W., PENG, C., GUO, Z., CHEN, J., ZHAO, Y., & LI, F. (2024). Effect of ferulic acid grafted walnut shell hemicellulose B on the flavor of traditional pickle fermentation. Food Science and Technology, 44. https://doi.org/10.5327/fst.00149

Edição

Seção

Artigos Originais