Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice

Autores

DOI:

https://doi.org/10.5327/fst.27623

Palavras-chave:

brown rice, artificial neuron network, drying, modeling

Resumo

Modeling moisture content variation under variable hot air dryers is challenging. In this study, mathematical models and artificial neural network (ANN) were investigated for modeling of instant “Cẩm” brown rice drying process. The experiments were done in four levels of hot air temperature (55, 60, 65, and 70 °C). The results demonstrated that among eight mathematical models, the diffusion approach could give the best prediction of moisture ratio during the drying process with the highest R-square and lowest mean square error. Besides, the ANN model with 10 hidden layers also could provide the best-fit model with the same criteria as the mathematical model. Compared with the ANN model, both can give a highly accurate prediction. However, the ANN model could be more beneficial in the up-scale process.

Downloads

Não há dados estatísticos.

Referências

Aghbashlo, M., Hosseinpour, S., & Mujumdar, A. S. (2015). Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying Technology, 33(12), 1397-1462. https://doi.org/10.1080/07373937.2015.1036288

Akpinar, E. K., & Dincer, I. (2005). Moisture transfer models for slabs drying. International Communications in Heat and Mass Transfer, 32(1-2), 80-93. https://doi.org/10.1016/j.icheatmasstransfer.2004.04.037

Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA‐ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation, 45(3), e15258. https://doi.org/10.1111/jfpp.15258

Arabhosseini, A., Huisman, W., van Boxtel, A., & Müller, J. (2009). Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Industrial Crops and Products, 29(1), 53-59. https://doi.org/10.1016/j.indcrop.2008.04.005

Bai, J.-W., Xiao, H.-W., Ma, H.-L., & Zhou, C.-S. (2018). Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. Journal of Food Quality, 2018, 3278595. https://doi.org/10.1155/2018/3278595

Beigi, M., & Torki, M. (2021). Experimental and ANN modeling study on microwave dried onion slices. Heat and Mass Transfer, 57, 787-796. https://doi.org/10.1007/s00231-020-02997-5

Chasiotis, V., Tzempelikos, D., Filios, A., & Moustris, K. P. (2020). Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Computers and Electronics in Agriculture, 172, 105074. https://doi.org/10.1016/j.compag.2019.105074

Demiray, E., & Tulek, Y. (2017). Effect of temperature on water diffusion during rehydration of sun-dried red pepper (Capsicum annuum L.). Heat and Mass Transfer, 53(5), 1829-1834. https://doi.org/10.1007/s00231-016-1940-0

Dincer, I., & Hussain, M. M. (2002). Development of a new Bi–Di correlation for solids drying. International Journal of Heat and Mass Transfer, 45(15), 3065-3069. https://doi.org/10.1016/S0017-9310(02)00031-5

Dorofki, M., Elshafie, A., Jaafar, O., Karim, O., & Mastura, S. (2012). A GIS-ANN-Based Method for Calculating the Runoff. Energy, 1(1), 1-5.

Farkas, I. (2013). Use of artificial intelligence for the modelling of drying processes. Drying Technology, 31(7), 848-855. https://doi.org/10.1080/07373937.2013.769002

Hacihafizoğlu, O., Cihan, A., Kahveci, K., & Korkmaz, C. (2009). Diffusion model for thin layer drying process of corn. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 223(4), 233-241. https://doi.org/10.1243/09544089jpme253

Henderson, S. M., & Pabis, S. (1961). Grain drying theory, I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), 169-173.

Hernández, J. (2009). Optimum operating conditions for heat and mass transfer in foodstuffs drying by means of neural network inverse. Food Control, 20(4), 435-438. https://doi.org/10.1016/j.foodcont.2008.07.005

Hernandez-Perez, J., Garcıa-Alvarado, M., Trystram, G., & Heyd, B. (2004). Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innovative Food Science & Emerging Technologies, 5(1), 57-64. https://doi.org/10.1016/j.ifset.2003.10.004

Jafari, S. M., Ganje, M., Dehnad, D., & Ghanbari, V. (2016a). Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion. Journal of Food Processing and Preservation, 40(2), 329-339. https://doi.org/10.1111/jfpp.12610

Jafari, S. M., Ghanbari, V., Ganje, M., & Dehnad, D. (2016b). Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer. Journal of Food Quality, 39(2), 98-108. https://doi.org/10.1111/jfq.12180

Kassem, A. (1998). Comparative studies on thin layer drying models for wheat. 13th International Congress on Agricultural Engineering.

Kumar, C., Karim, M., & Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. https://doi.org/10.1016/j.jfoodeng.2013.08.014

Le, T. K. L., & Nguyen, M. T. (2019). Optimization of germination process of “Cam” brown rice by response surface methodology and evaluation of germinated rice quality. Food Research, 4(2), 459-467. https://doi.org/10.26656/fr.2017.4(2).307.1

Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432. https://doi.org/10.1021/ie50137a021

Loan, L. T. K., Quoc, H. M., Chi, T. N., My, N. T. Q., & Tai, N. V. (2022). Impact of cooking and drying conditions on the quality of instant brown rice cultivated in Vietnam. The International Conference on Sustainable Agriculture for Food Safety, Tien Giang University, Vietnam. Retrieved from https://www.researchgate.net/publication/362325695_Impact_of_cooking_and_drying_conditions_on_the_quality_of_instant_brown_rice_cultivated_in_Vietnam

Mavani, N. R., Ali, J. M., Othman, S., Hussain, M. A., Hashim, H., & Rahman, N. A. (2022). Application of Artificial Intelligence in Food Industry: a Guideline. Food Engineering Reviews, 14(1), 134-175. https://doi.org/10.1007/s12393-021-09290-z

Nadi, F., & Tzempelikos, D. (2018). Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer, 54(7), 1853-1866. https://doi.org/10.1007/s00231-018-2279-5

Ngo, T. V., Kusumawardani, S., Kunyanee, K., & Luangsakul, N. (2022). Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods, 11(21), 3384. https://doi.org/10.3390/foods11213384

Onu, C. E., Igbokwe, P. K., Nwabanne, J. T., & Ohale, P. E. (2022). ANFIS, ANN, and RSM modeling of moisture content reduction of cocoyam slices. Journal of Food Processing and Preservation, 46(1), e16032. https://doi.org/10.1111/jfpp.16032

Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599-618. https://doi.org/10.1111/1541-4337.12196

Page, G. E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. Purdue University.

Roman, M. C., Fabani, M. P., Luna, L. C., Feresin, G. E., Mazza, G., & Rodriguez, R. (2020). Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Information Processing in Agriculture, 7(2), 333-341. https://doi.org/10.1016/j.inpa.2019.07.002

Şahin, U., & Öztürk, H. K. (2018). Comparison between Artificial Neural Network model and mathematical models for drying kinetics of osmotically dehydrated and fresh figs under open sun drying. Journal of Food Process Engineering, 41(5), e12804. https://doi.org/10.1111/jfpe.12804

Saleh, A. S. M., Wang, P., Wang, N., Yang, L., & Xiao, Z. (2019). Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1070-1096. https://doi.org/10.1111/1541-4337.12449

Salehi, F. (2020). Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. International Journal of Fruit Science, 20(3), 506-520. https://doi.org/10.1080/15538362.2019.1653810

Selvi, K. Ç., Alkhaled, A. Y., & Yıldız, T. (2022). Application of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) during the Infrared Drying Process. Processes, 10(10), 2069. https://doi.org/10.3390/pr10102069

Shi, Q., Zheng, Y., & Zhao, Y. (2013). Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management, 71, 208-216. https://doi.org/10.1016/j.enconman.2013.03.032

Tai, N. V., Linh, M. N., & Thuy, N. M. (2021). Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam. Food Research, 5(5), 244-249. https://doi.org/10.26656/fr.2017.5(5).180

Tarafdar, A., Jothi, N., & Kaur, B. P. (2021). Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100306. https://doi.org/10.1016/j.jarmap.2021.100306

Tarafdar, A., Shahi, N. C., Singh, A., & Sirohi, R. (2018). Artificial Neural Network Modeling of Water Activity: a Low Energy Approach to Freeze Drying. Food and Bioprocess Technology, 11(1), 164-171. https://doi.org/10.1007/s11947-017-2002-4

Thuy, N. M., Hiep, L. H., Tai, N. V., Huong, H. T. T., & Minh, V. Q. (2022a). Impact of drying temperatures on drying behaviours, energy consumption and quality of purple sweet potato flour. Acta Scientiarum Polonorum Technologia Alimentaria, 21(4), 379-387. https://doi.org/10.17306/J.AFS.2022.1061

Thuy, N. M., Minh, V. Q., Ha, H. T. N., & Tai, N. V. (2021). Impact of different thin layer drying temperatures on the drying time and quality of butterfly pea flowers. Food Research, 5(6), 197-203. https://doi.org/10.26656/fr.2017.5(6).328

Thuy, N. M., Tien, V. Q., Van Tai, N., & Minh, V. Q. (2022b). Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae, 8(6), 546. https://doi.org/10.3390/horticulturae8060546

Thuy, N. M., Tuyen, N. T. M., Thanh, N. V., & Tai, N. V. (2020). Evaluation of freeze-drying conditions on the process kinetics and physicochemical properties of purple shallot. Food Research, 4(5), 1630-1636. https://doi.org/10.26656/fr.2017.4(5).246

Toğrul, İ. T., & Toğrul, H. (2007). Determination of moisture transport parameters of some fruits under open sun drying conditions. International Journal of Green Energy, 4(4), 397-408. https://doi.org/10.1080/15435070701465623

Waewkum, P., & Singthong, J. (2021). Functional properties and bioactive compounds of pigmented brown rice flour. Bioactive Carbohydrates and Dietary Fibre, 26, 100289. https://doi.org/10.1016/j.bcdf.2021.100289

Wang, C., & Singh, R. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineers, 11(6), 668-672.

Yildiz, G., & İzli, G. (2019). Influence of microwave and microwave-convective drying on the drying kinetics and quality characteristics of pomelo. Journal of Food Processing and Preservation, 43(6), e13812. https://doi.org/10.1111/jfpp.13812

Zogzas, N., Maroulis, Z., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. https://doi.org/10.1080/07373939608917205

Downloads

Publicado

2023-07-07

Como Citar

LOAN, L. T. K., THUY, N. M., & TAI, N. V. (2023). Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice. Food Science and Technology, 43. https://doi.org/10.5327/fst.27623

Edição

Seção

Artigos Originais