The influence of particle size on the absorption rate of catfish (Clarias gariepinus) bone calcium

Autores

DOI:

https://doi.org/10.5327/fst.131822

Palavras-chave:

calcium absorption, fishbone, nanoparticle size, nutritional value

Resumo

The adequacy of calcium from food consumption is difficult to meet because of its low absorption rate. One of the ways to increase calcium absorption is to increase its solubility by decreasing its particle size to the nanometer scale. Nanoparticles have better performance due to their increased surface area-to-volume ratio. This study aimed to determine the effect of the particle size of fish bones on calcium absorption rate. The catfish bone flour was made by two methods with the same stages, but they differed in the use of tools (the machine method and the traditional method). The particle size analysis of the flour showed that the machine method was in the nanometer range. The nutritional content of the machine-milled flour was rich in protein and lipids, while the flour produced by the traditional method was rich in calcium, phosphorus, and carbohydrates. Based on the results of the absorption test, both catfish bone flours were proven to be able to gradually increase calcium levels to their peak at 2 h post-administration. In sum, bone flour with nanoparticle sizes produced by the machine was able to maximize the calcium absorption rate in rats. 

Downloads

Não há dados estatísticos.

Referências

Abbey, L., Glover-Amengor, M., Atikpo, M. O., Atter, A., & Toppe, J. (2016). Nutritional content of fish powder from low value fish and fish byproducts. Food Science Nutrition, 5(3), 374-379. https://doi.org/10.1002/fsn3.402

Adeniji, A. R., Ayoade, O., Akinwande, B. O., & Oludare, O. (2015). Nutritional Evaluation of Boiled and Smoked Catfish (Clarias gariepinus) using Different Parts (Bone, Skin and flesh). International Journal of Innovative Research in Science, Engineering and Technology, 4(10), 10465-10469. https://doi.org/10.15680/IJIRSET.2015.0410127

Association of Official Analytical Chemist (AOAC). (1990). Official Methods of Analysis (15th ed.). Association of Official Analytical Chemist. v. 2.

Association of Official Analytical Chemist (AOAC). (2000). Moisture in Malt Gravimetric Method. (935.29). In AOAC (Ed.), Official Methods of Analysis (17th ed.). Association of Official Analytical Chemist.

Bechtel, P. J., Watson, M. A., Lea, J. M., Bett-Garber, K. L., & Bland, J. M. (2019). Properties of bone from Catfish heads and frames. Food Science and Nutrition, 7(4), 1396-1405. https://doi.org/10.1002/fsn3.974

Bubel, F., Dobrzański, Z., Bykowski, P. J., Chojnacka, K., Opaliński, S., & Trziszka, T. (2015). Production of calcium preparations by technology of saltwater fish by product processing. Open Chemistry, 13(1), 1333-1340. https://doi.org/10.1515/chem-2015-0146

Busca, K., Wu, S., Miao, S., Govindan, A., Strain, C. R., O’Donnell, S. T., Whooley, J., Gite, S., Paul Ross, R., & Stanton, C. (2021). An in vitro study to assess bioaccessibility and bioavailability of calcium from blue whiting (Micromesistius poutassou) fish bone powder. Irish Journal of Agricultural and Food Research. https://doi.org/10.15212/ijafr-2020-0140

Cámara-Martos, F., & Amaro-López, M. A. (2002). Influence of dietary factors on calcium bioavailability: A brief review. Biological Trace Element Research, 89, 43-52. https://doi.org/10.1385/BTER:89:1:43

Cormick, G., & Belizán, J. M. (2019). Calcium intake and health. Nutrients, 11(7), 1606. https://doi.org/10.3390/nu11071606

Cormick, G., Zhang, N. N., Andrade, S. P., Quiroga, M. J., di Marco, I., Porta, A., Althabe, F., & Belizán, J. M. (2014). Gaps between calcium recommendations to prevent pre-eclampsia and current intakes in one hospital in Argentina. BMC Research Notes, 7, 920. https://doi.org/10.1186/1756-0500-7-920

Deniz, D. Y., Kahraman, M., Erdem Kuruca, S., Suleymanoglu, M., & Gungor, A. (2015). 4-Vinylbenzene Boronic Acid-Hydroxy Apatite/Polyvinyl Alcohol Based Nanofiber Scaffold Synthesized by UV-Activated Reactive Electrospinning. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(14), 727-732. https://doi.org/10.1080/00914037.2014.1002130

European Commission. (2011). Commission Recommendation Number 2011/696/EU on the definition of nanomaterial. European Commission.

Ferazuma, H., Marliyati, S. A., & Amalia, L. (2011). Substitution of Dumbo Catfish Head Flour (Clarias Gariepinus Sp) to Increase Calcium Content of Crackers. Journal of Nutrition Food, 6(1), 18-27.

Flammini, L., Martuzzi, F., Vivo, V., Ghirri, A., Salomi, E., Bignetti, E., & Barocelli, E. (2016). Hake fish bone as a calcium source for efficient bone mineralization. International Journal of Food Sciences and Nutrition, 67(3), 265-273. https://doi.org/10.3109/09637486.2016.1150434

Greiner, R. (2009). Current and projected applications of nanotechnology in the food sector. Nutrire, 34(1), 243-260.

Guéguen, L., & Pointillart, A. (2000). The Bioavailability of Dietary Calcium. Journal of the American College of Nutrition, 19(Suppl. 2), 119S-136S. https://doi.org/10.1080/07315724.2000.10718083

Hemung, B. (2013). Properties of Tilapia Bone Powder and Its Calcium Bioavailability Based on Transglutaminase Assay. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4), 306-309. https://doi.org/10.17706/IJBBB.2013.V3.219

Herpandi, N. H., & Adzitey, F. (2011). Fish bone and scale as a potential source of halal gelatin. Journal of Fisheries and Aquatic Science, 6(4), 379-389. https://doi.org/10.3923/jfas.2011.379.389

Hunt, C. D., & Johnson, L. A. K. (2007). Calcium requirements: New estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. American Journal of Clinical Nutrition, 86(4), 1054-1063. https://doi.org/10.1093/ajcn/86.4.1054

Ikhsan, M., Muhsin, & Patang. (2016). The effect of drying temperature variations on the quality of dumbo catfish (Clarias gariepinus). Journal of Agricultural Technology Education, 2(2), 114-122. https://doi.org/10.26858/jptp.v2i2.5166

Lee, Y. K., Jung, S. K., Chang, Y. H., & Kwak, H. S. (2017). Highly bioavailable nanocalcium from oyster shell for preventing osteoporosis in rats. International Journal of Food Sciences and Nutrition, 68(8), 931-640. https://doi.org/10.1080/09637486.2017.1307948

Li, X., Chen, G., Le, Z., Li, X., Nie, P., Liu, X., Xu, P., Wu, H. B., Liu, Z., Lu, Y. (2019). Well-Dispersed Phosphorus Nanocrystals within Carbon via High-Energy Mechanical Milling for High Performance Lithium Storage. Nano Energy, 59, 464-471. https://doi.org/10.1016/j.nanoen.2019.02.061

Logesh, A. R., Pravinkumar, M., Raffi, S. M., & Kalaiselvam, M. (2012). Calcium and phosphorus determination in bones of low value fishes, Sardinella longiceps (Valenciennes) and Trichiurus savala (Cuvier), from Parangipettai, Southeast Coast of India. Asian Pacific Journal of Tropical Disease, 2(Suppl. 1), S254-S256. https://doi.org/10.1016/S2222-1808(12)60160-1

Mosaddegh, E., & Hassankhani, A. (2014). Preparation and characterization of nano-CaO based on eggshell waste: Novel and green catalytic approach to highly efficient synthesis of pyrano [4, 3-b]pyrans. Chinese Journal of Catalysis, 35(3), 351-356. https://doi.org/10.1016/s1872-2067(12)60755-4

Muryati, M., Hariani, P. L., & Said, M. (2019). Preparation and Characterization Nanoparticle Calcium Oxide from Snakehead Fish Bone using Ball Milling Method. Indonesian Journal of Fundamental and Applied Chemistry, 4(3), 111-115. https://doi.org/10.24845/IJFAC.V4.I3.111

Nwanna, L. C., Kolahsa, M., Eisenreich, R., & Schwarz, F. J. (2008). Pre-treatment of dietary plant feedstuffs with phytase and its effect on growth and mineral concentration in common carp (Cyprinus carpio L.). Journal of Animal Physiology and Animal Nutrition, 92(6), 677-682. https://doi.org/10.1111/j.1439-0396.2007.00764.x

Nwanna, L. C., & Schwarz, F. J. (2007). Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L). Aquaculture Research, 38(10), 1037-1044. https://doi.org/10.1111/j.1365-2109.2007.01752.x

Park, H. S., Jeon, B. J., Ahn, J., & Kwak, H. S. (2007). Effects of nanocalcium supplemented milk on bone calcium metabolism in ovariectomized rats. Asian-Australasian Journal of Animal Sciences, 20(8), 1266-1271. https://doi.org/10.5713/ajas.2007.1266

Ranjan, R., Sawal, R. K., Ranjan, A., & Patil, N. (2019). Comparison of calcium absorption from nano- and micro-sized calcium salts using everted gut sac technique. Indian Journal of Animal Science, 89(3), 337-339. https://doi.org/10.56093/ijans.v89i3.88101

Rosidi, W. N. A. T. M., Arshad, N. M., & Mohtar, N. F. (2021). Characterization of sardinella fimbriata and clarias gariepinus bones. Biodiversitas, 22(4), 1621-1626. https://doi.org/10.13057/biodiv/d220405

Ross, A. C., Taylor, C. L., Yatkine, A. L., Valle, H. B. (2011). Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press.

Sembok, W. Z. (2013). Botany and Plant Physiology (GTN3300). Universiti Malaysia Terengganu.

Strzelczak, A., Balejko, J., Szymczak, M., & Witczak, A. (2021). Effect of protein denaturation temperature on rheological properties of baltic herring (Clupea harengus membras) muscle tissue. Foods, 10(4), 829. https://doi.org/10.3390/foods10040829

Sumarto, Desmelati, Sari, N. I., Angraini, R. M., & Arieska, L. (2021). Characteristic of Nano-Calcium Bone from a Different Species of Catfish (Pangasius hypophthalmus, Clarias batrachus, Hemibagrus nemurus and Paraplotosus albilabris). IOP Conference Series: Earth and Environmental Science, 695, 012055. https://doi.org/10.1088/1755-1315/695/1/012055

Taufiq, N., & Fadlila, R. N. (2021). Production of Calcium (Ca) Nano Particles from Waste Catfish Bone (Pangasius sp) Using Ultrasound-Assisted Solvent Extraction Method. Al-Kimia, 9(1), 9-15. https://doi.org/10.24252/al-kimia.v9i1.16390

Umar, F., Oyeroand, J. O., & Ibrahim, S. U. (2018). Comparative Nutritional Composition of African Catfish (Clarias gariepinus) smoked with melon shell briquettes and firewood. Journal of Fish Life Science, 3(1), 39-43.

U.S. Department of Agriculture. (2019). Food Data Central. U.S. Department of Agriculture.

Välimaa, A. L., Mäkinen, S., Mattila, P., Marnila, P., Pihlanto, A., Mäki, M., & Hiidenhovi, J. (2019). Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 3(4), 209-226. https://doi.org/10.1093/fqsafe/fyz024

Xavier Eugien, L., Pravinkumar, M., Logesh, A. R., Viswanathan, C., & Raffi, S. M. (2014). Estimation of calcium and phosphorus in bones of three low value fishes Sardinella fimbriata, Sardinella albella and Sardinella gibbosa from Muttom, Southeast Coast of India. International Journal of Current Research, 3(2), 43-46.

Yin, T., Du, H., Zhang, J., & Xiong, S. (2016). Preparation and Characterization of Ultrafine Fish Bone Powder. Journal of Aquatic Food Product Technology, 25(7), 1045-1055. https://doi.org/10.1080/10498850.2015.1010128

Yin, T., Park, J. W., & Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. LWT – Food Science and Technology, 64(1), 367-373. https://doi.org/10.1016/j.lwt.2015.06.007

Zhu, W., He, W., Wang, W., Bu, Y., Li, X., Li, J., & Zhang, Y. (2021). Effects of thermoultrasonic treatment on characteristics of micro-nano particles and flavor in Greenland halibut bone soup. Ultrasonics Sonochemistry, 79, 105785. https://doi.org/10.1016/j.ultsonch.2021.105785

Downloads

Publicado

2023-06-19

Como Citar

ADI, A. C., VETERINY, A. S., SALISA, W., AYU, W. C., & RACHMAWATI, H. (2023). The influence of particle size on the absorption rate of catfish (Clarias gariepinus) bone calcium. Food Science and Technology, 43. https://doi.org/10.5327/fst.131822

Edição

Seção

Artigos Originais