Determination of icewine lipids by Ultra High Performance Liquid Tandem Chromatography Quadrupole Time-of-Flight Mass Spectrometry
DOI:
https://doi.org/10.5327/fst.94822Palavras-chave:
UPLC-QTOF-MS, Icewine, Lipids, Qualitative and Quantitative, Nutrients and HealthResumo
Backgroud: Icewine is a unique food in the world. Lipids in icewine are nutritious and healthy for humans. However, limited studies are available on the qualitative and quantitative analysis of icewine.
Method: UPLC-QTOF-MS approach to study lipids in icewine. Bioinformatics strategies will expand the applications of lipidomics in food science,OPLS-DA) was performed to visualise group separation and recognized significantly transform metabolites.
Results: In the present study, lipid molecules belonging to 5 classes were qualitatively and quantitatively analysed. The lipids studied were as track: 102 triacylglycerols (TAG), 18 free fatty acids (FFA), 5 diacylglycerols (DAG), 6 ceramides and sphingosine-1-phosphate (Cer), and 1 N-palmitoyl-D-erythro-sphingosylphosphorylcholine (SM). The Shangri-La icewine has higher TAG and FFA content than the Canadian icewine. However, in Canadian icewine samples, the DAG (16:0/16:1) content (398.26 μg/mL) was higher than that of Shangri-La icewine specimens (522.43 μg/mL). The SM (14:0) content in Canadian icewine was higher than that of Shangri-La icewine.
Conclusion:UPLC-QTOF-MS is an effective method for detecting lipids in icewine samples. The primary fundamental lipids in icewine samples were TAG, FFA, DAG, Cer, and SM. Therefore, Shangri-La icewine is more nutritious for human health than Canadian icewine.
Downloads
Referências
Boccard J, Rutledge DN. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal Chim Acta. 2013;769:30–39. doi:10.1016/j.aca.2013.01.022.
Brahe LK, Ängquist L, Larsen LH, Vimaleswaran KS, Hager J, Viguerie N, et al. Influence of SNPs in nutrient-sensitive candidate genes and gene–diet interactions on blood lipids: the DiOGenes study. Br J Nutr. 2013;110:790–796. doi:10.1017/S0007114512006058.
Capaldo B, Napoli R, Di Marino L, Guida R, Pardo F, Saccá L. Role of insulin and free fatty acid (FFA) availability on regional FFA kinetics in the human forearm. J Clin Endocrinol Metab. 1994;79:879–882. doi:10.1210/jcem.79.3.8077375.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–W494. doi:10.1093/nar/gky310.
Coelho ALS, Feuser PE, Carciofi BAM, de Oliveira D, de Andrade CJ. Biological activity of mannosylerythritol lipids on the mammalian cells. Appl Microbiol Biotechnol. 2020;104:8595–8605. doi:10.1007/s00253-020-10857-9.
Deroite A, Legras JL, Rigou P, Ortiz JA, Dequin S. Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. AMB Express. 2018;8:130. doi:10.1186/s13568-018-0657-5.
Dunn W, Broadhurst D, Begley P, Zelena E, Francis MS, Anderson N, et al. Human Serum Metabolome (HUSERMET) Consortium Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–1083.
Fiedorowicz A, Kozak SA, Bobak Ł, Kałas W, Strządała L. Ceramides and sphingosine-1-phosphate as potential markers in diagnosis of ischaemic stroke. Neurol Neurochir Pol. 2019;53:484–491. doi:10.5603/PJNNS.a2019.0063.
Fragopoulou E, Nomikos T, Antonopoulou S, Mitsopoulou CA, Demopoulos CA. Separation of Biologically Active Lipids from Red Wine. J Agric Food Chem. 2000;48:1234–1238. doi:10.1021/jf990554p.
Ghareib M, Youssef KA, Khalil AA. Ethanol tolerance ofSaccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiol. 1988;33:447–452. doi:10.1007/BF02925769.
Gupta M, Sharma N, Ali Z. Status of serum free fatty acid (FFA) level in obese person and its association with DM type-II.
Inoue K, Toyo’oka T. Chapter 13 - Foodomics. In: Y. Picó, editors. Comprehensive Analytical Chemistry. Elsevier; 2015. p. 653–684.
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and IκB-α. Diabetes. 2002;51:2005–2011. doi:10.2337/diabetes.51.7.2005.
Korbelik M. Ceramide and Sphingosine-1-Phosphate/Sphingosine act as Photodynamic Therapy-Elicited Damage-Associated Molecular Patterns: Release from Cells and Impact on Tumor-Associated Macrophages. J Anal Bioanal Tech. 2014;5:
Li N, Wang L, Yin J, Ma N, Tao Y. Adjustment of impact odorants in Hutai-8 rose wine by co-fermentation of Pichia fermentans and Saccharomyces cerevisiae. Food Res Int. 2022;153:110959. doi:10.1016/j.foodres.2022.110959.
Li X, Wang X, Li H, Li Y, Guo Y. Seminal Plasma Lipidomics Profiling to Identify Signatures of Kallmann Syndrome. Front Endocrinol. 2021;712.
Liu S, Xu X, Xu T. Application of TAG54:2-FA18:1 and its composition in the diagnosis of diabetes and diabetic nephropathy.
Luca TD, Morré DM, Zhao H, James Morré D. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. BioFactors. 2005;25:43–60. doi:10.1002/biof.5520250106.
Ma Y, Xiong J, Zhang X, Qiu T, Pang H, Li X, et al. Potential biomarker in serum for predicting susceptibility to type 2 diabetes mellitus: Free fatty acid 22:6. J Diabetes Investig. 2021;12:950–962. doi:10.1111/jdi.13443.
Macrae K, Stretton C, Lipina C, Blachnio ZA, Baranowski M, Gorski J, et al. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate. J Lipid Res. 2013;54:2366–2378. doi:10.1194/jlr.M036996.
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int. 2021;141:110142. doi:10.1016/j.foodres.2021.110142.
Nagayama T, Katsuta M. Ceramide and Sphingosine-1-Phosphate/Sphingosine act as PhotodynamicTherapy-Elicited Damage-Associated Molecular Patterns: Release from Cells and Impact on Tumor-Associated Macrophages. General Assembly speech summary. 2014;101:
Olsvik PA, Søfteland L. Mixture toxicity of chlorpyrifos-methyl, pirimiphos-methyl, and nonylphenol in Atlantic salmon (Salmo salar) hepatocytes. Toxicol Rep. 2020;7:547–558. doi:10.1016/j.toxrep.2020.03.008.
Phan Q, Tomasino E. Untargeted lipidomic approach in studying pinot noir wine lipids and predicting wine origin. Food Chem. 2021;355:129409. doi:10.1016/j.foodchem.2021.129409.
Saad A, Bousquet J, Fernandez CN, Loquet A, Géan J. New Insights into Wine Taste: Impact of Dietary Lipids on Sensory Perceptions of Grape Tannins. J Agric Food Chem. 2021;69:3165–3174. doi:10.1021/acs.jafc.0c06589.
Sakamoto S, Nakahara H, Shibata O. Miscibility Behavior of Sphingomyelin with Phytosterol Derivatives by a Langmuir Monolayer Approach. J Oleo Sci. 2013;62:809–824. doi:10.5650/jos.62.809.
Siriwardane DA, Wang C, Jiang W, Mudalige T. Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Int J Pharm. 2020;578:119077. doi:10.1016/j.ijpharm.2020.119077.
Srisamatthakarn P. Improvement of varietal aroma in grape and tropical fruit wines by optimal choice of yeasts and nutrient supplements. Universitätsbibliothek; 2011.
Strelow A, Bernardo K, Adam KS, Linke T, Sandhoff K, Krönke M, et al. Overexpression of Acid Ceramidase Protects from Tumor Necrosis Factor–Induced Cell Death. J Exp Med. 2000;192:601–612. doi:10.1084/jem.192.5.601.
Taniguchi Y, Ohba T, Miyata H, Ohki K. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochim Biophys Acta Biomembr. 2006;1758:145–153. doi:10.1016/j.bbamem.2006.02.026.
Tesnière C. Importance and role of lipids in wine yeast fermentation. Appl Microbiol Biotechnol. 2019;103:8293–8300. doi:10.1007/s00253-019-10029-4.
Tu J, Yin Y, Xu M, Wang R, Zhu ZJ. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics. 2017;14:5. doi:10.1007/s11306-017-1304-x.
Voisset C, Lavie M, Helle F, De Beeck AO, Bilheu A, Bertrand MJ, et al. Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol. 2008;10:606–617. doi:10.1111/j.1462-5822.2007.01070.x.
Wang X, Huang H, Su C, Zhong Q, Wu G. Cilostazol ameliorates high free fatty acid (FFA)-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Artif Cells Nanomed Biotechnol. 2019;47:3704–3710. doi:10.1080/21691401.2019.1665058.
Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc. 2010;5:1005–1018. doi:10.1038/nprot.2010.50.
Wu B, Wei F, Xu S, Xie Y, Lv X, Chen H, et al. Mass spectrometry-based lipidomics as a powerful platform in foodomics research. Trends Food Sci Technol. 2021;107:358–376. doi:10.1016/j.tifs.2020.10.045.
Youngtaek OH, Kisook OH, Kang I. 24-h Continuous Nicotinic Acid Infusion Causes FFA Rebound and Insulin Resistance in Rats. SEG Tech Program Expand Abstr. 1986;12:715.