Effects of continuous and repeated dry heat treatment on the technological properties of green banana (Musa paradisiaca) starch





technological properties, physical modification, industrial application


Starch is an important ingredient used in numerous industrial applications. The utilization of nonconventional sources of this carbohydrate enables the improvement of functional properties and reduces waste from certain botanical sources such as green bananas. This study aimed to evaluate the effects of dry heat modification with varying cycles (1–3) and times (3–9 h) on the thermal, paste, structural, and morphological properties, and digestibility of green banana starch, comparing them with native starch. The gelatinization enthalpy decreased with the applied treatment, especially for starches treated with repeated cycles. The peak viscosity, as observed in the RVA curve, decreased after treatment. X-ray diffractometry remained unchanged, while relative crystallinity decreased. The morphology exhibited slight alterations after the treatment. The slow digestibility of the treated starches showed a significant increase compared to the digestibility of native starch.


Não há dados estatísticos.


Almeida, R. L. J., Santos, N. C., Feitoza, J. V., Silva, G. M., Muniz, C. E., Eduardo, R. S., Ribeiro, V. H. A., Silva, V. M. A., & Mota, M. M. A. (2022). Effect of heat-moisture treatment on the thermal, structural and morphological properties of Quinoa starch. Carbohydrate Polymer Technologies and Applications, 3, e100192. https://doi.org/10.1016/j.carpta.2022.100192

Bet, C. D., Oliveira, C. S., Colman, T. A. D., Marinho, M. T., Lacerda, L. G., Ramos, A. P., & Schnitzler, E. (2018). Organic amaranth starch: a study of its technological properties after heat moisture treatment. Food Chemistry, 264, 435-442. https://doi.org/10.1016/j.foodchem.2018.05.021

Bian, H. W., Zheng, L., Chen, & Zhu, H. L. (2020). Multi-scale structure and physicochemical properties of highland barley starch following dry heat treatment. Food Science, 41(7), 93-101. https://doi.org/10.7506/spkx1002-6630-20181107-085

Cardoso, I. G., Abranches, M. V., Silva, M. C. R., Custódio, F. B., Pereira, I. N., Finger, R. M., Barros, L. B., Santos, B. N. C., & Mata, G. M. S. C. (2023). Unripe banana biomass as a dairy fat partial replacer in vanilla homemade ice cream. Food Science and Technology, 43, e41722. https://doi.org/10.1590/fst.41722

Cheng, F., Ren, Y., Warkentin, T. D., & Ai, Y. (2023). Heat-moisture treatment to modify structure and functionality and reduce digestibility of wrinkled and round pea starches. Carbohydrate Polymers, 324, e121506. https://doi.org/10.1016/j.carbpol.2023.121506

Dornelles, M. S., Azevedo, E. S., & Noreña, C. P. Z. (2023). Effect of microwave followed by cooling on structural and digestive properties of pinhão starch. International Journal of Biological Macromolecules, 253(4), e126981. https://doi.org/10.1016/j.ijbiomac.2023.126981

Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(Suppl. 2), S33-50.

Food and Agriculture Organization of the United Nations (FAO) (2021). Markets and trade: bananas. FAO. Retrieved from www.fao.org/markets-and-trade/commodities/bananas/en

González, M., Vernon-Carter, E. J., Alvarez-Ramirez, J., & Carrera-Tarela, Y. (2020). Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. International Journal of Biological Macromolecules, 166, 1439-1447. https://doi.org/10.1016/j.ijbiomac.2020.11.023

Gou, M., Wu, H., Saleh, A. S. M., Jing, L., Liu, Y., Zhao, K., Su, C., Jiang, H., & Li, W. (2019). Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. International Journal of Biological Macromolecules, 129, 869-877. https://doi.org/10.1016/j.ijbiomac.2019.01.225

Ito, V., Bet, C., Wojeicchowski, J., Demiate, I., Spoto, M., Schnitzler, E., & Lacerda, L. (2018). Effects of gamma radiation on the thermoanalytical, structural and pasting properties of black rice (Oryza sativa L.) flour. Journal of Thermal Analysis and Calorimetry, 133, 529-537. https://doi.org/10.1007/s10973-017-6766-6

Izidoro, D. R., Sierakowski, M., Haminiuk, C. W. I., de Souza, C. F., & Scheer, A. D. (2011). Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. Journal of Food Engineering, 104(4), 639-648. https://doi.org/10.1016/j.jfoodeng.2011.02.002

Kubiaki, F. T., Figueroa, A. M., Oliveira, C. S., Demiate, I. M., Schnitzler, E., & Lacerda, L. G. (2018). Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch. Journal of Thermal Analysis and Calorimetry, 131, 587-594. https://doi.org/10.1007/s10973-016-5832-9

Lei, N., Chai, S., Xu, M., Ji, J., Mao, H., Yan, S., Gao, Y., Li, H., Wang, J. & Sun, B. (2020). Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. International Journal of Biological Macromolecules, 147, 109-116. https://doi.org/10.1016/j.ijbiomac.2020.01.060

Liang, S., Su, C., Saleh, A. S. M., Wu, H., Zhang, B., Ge, X., & Li, W. (2021). Repeated and continuous dry heat treatments induce changes in physicochemical and digestive properties of mung bean starch. Journal of Food Processing and Preservation, 45(3), e15281. https://doi.org/10.1111/jfpp.15281

Liu, K., Hao, Y., Chen, Y., & Gao, Q. (2019). Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. International Journal of Biological Macromolecules, 132, 1044-1050. https://doi.org/10.1016/j.ijbiomac.2019.03.146

Liu, W., Pan, W., Li, J., Chen, Y., Yu, Q., Rong, L., Xiao, W., Wen, H., & Xie, J. (2022). Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 5, 28-33. https://doi.org/10.1016/j.crfs.2021.12.004

Maior, L. O., Almeida, V. S., Barretti, B. R. V., Ito, V. C., Beninca, C., Demiate, I. M., Schnitzler, E., Carvalho Filho, A. S., & Lacerda, L. G. (2021). Combination of organic acid and heat-moisture treatment: impact on the thermal, structural, pasting properties and digestibility of maize starch. Journal of Thermal Analysis and Calorimetry, 143, 265-273. https://doi.org/10.1007/s10973-019-09241-1

Maniglia, B. C., Lima, D. C., Matta Júnior, M., Oge, A., Le-Bail, P., Augusto, P. E. D., & Le-Bail, A. (2020). Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application. Food Research International, 137, e109731. https://doi.org/10.1016/j.foodres.2020.109731

Marta, H., Cahyana, Y., Djali, M., Arcot, J., & Tensiska, T. (2019). A comparative study on the physicochemical and pasting properties of starch and flour from different banana (Musa spp.) cultivars grown in Indonesia. International Journal of Food Properties, 22(1), 1562-1575. https://doi.org/10.1080/10942912.2019.1657447

Nara, S., & Komiya, T. (1983). Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch, 35(12), 407-410. https://doi.org/10.1002/star.19830351202

Nwakego, A. H., Opeyemi, J. O., Olufemi, A. O., & David, O. T. (2022). Physicochemical, functional, pasting properties and fourier transform infrared spectroscopy of native and modified cardaba banana (Musa ABB) starches. Food Chemistry Advances, 1, e100076. https://doi.org/10.1016/j.focha.2022.100076

Oh, I. K., Bae, I. Y., & Lee, H. G. (2018). Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules, 108, 568-575. https://doi.org/10.1016/j.ijbiomac.2017.11.180

Sá, A. A., Gonçalves, M. I. A., Vasconcelos, T. R., Mendes, M. L. M., & Messias, C. M. B. O. (2021). Physical, chemical and nutritional evaluation of flours prepared with pulp and peel of green banana from different varieties. Brazilian Journal of Food Technology, 24, e2020020. https://doi.org/10.1590/1981-6723.02020

Sun, Q., Gong, M., Li, Y., & Xiong, L. (2014). Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydrate Polymers, 110, 128-134. https://doi.org/10.1016/j.carbpol.2014.03.090

Xu, F., Zhang, L., Liu, W., Liu, Q., Wang, F., Zhang, H., Hu, H., & Blecker, C. (2021). Physicochemical and structural characterization of potato starch with different degrees of gelatinization. Foods, 10(5), e1104. https://doi.org/10.3390/foods10051104

Xu, M., Saleh, A. S. M., Gong, B., Li, B., Jing, L., Giu, M., Jiang, L., & Li, W. (2018). The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Research International, 111, 324-333. https://doi.org/10.1016/j.foodres.2018.05.052

Wu, T., Tsai, S., Sun, N., Dai, F., Yu, P., Chen, Y., & Chau, C. (2020). Enhanced thermal stability of green banana starch by heat-moisture treatment and its ability to reduce body fat accumulation and modulate gut microbiota. International Journal of Biological Macromolecules, 160, 915-924. https://doi.org/10.1016/j.ijbiomac.2020.05.271

Yang, M., Chang, L., Jiang, F., Zhao, N., Zheng, P., Simbo, J., Yu, X., & Du, S. (2022). Structural, physicochemical and rheological properties of starches isolated from banana varieties (Musa spp.). Food Chemistry, 16, e100473. https://doi.org/10.1016/j.fochx.2022.100473

Yashini, M., Khushbu, S., Madhurima, N., Sunil, C. K., Mahendran, R., & Venkatachalapathy, N. (2022). Thermal properties of different types of starch: A review. Critical Reviews in Food Science and Nutrition, 2, 1-24. https://doi.org/10.1080/10408398.2022.2141680

Zhou, Y., Cui, L., You, X., Jiang, Z., Qu, W., Liu, P., Ma, D., & Cui, Y. (2021). Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch. Food Hydrocolloids, 113, e106532. https://doi.org/10.1016/j.foodhyd.2020.106532

Zou, J., Xu, M., Tang, W., Wen, L., & Yang, B. (2020). Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chemistry, 309, e125733. https://doi.org/10.1016/j.foodchem.2019.125733




Como Citar

RUTHS, L. C., MAIOR, L. de O., BACH, D., ROMKO, S. S., SCHNITZLER, E., DEMIATE, I. M., & Lacerda, L. G. (2024). Effects of continuous and repeated dry heat treatment on the technological properties of green banana (Musa paradisiaca) starch . Food Science and Technology, 44. https://doi.org/10.5327/fst.00057



Artigos Originais