Influence of cultivation region on color, volatile compounds, phenolics, and antioxidant activity of Arabica coffee (Coffea arabica) Catuaí cultivar in Brazil
DOI:
https://doi.org/10.5327/fst.00464Palavras-chave:
specialty coffee, brazilian regions, organic compounds, antioxidant activityResumo
Coffee is one of the world’s main commodities, with Brazil being the largest producer. When it meets production and sensory quality requirements, coffee can be classified as a specialty by the Brazilian Coffee Industry Association or Specialty Coffee Association, being recognized for its aroma and taste, defined by volatile and non-volatile organic compounds, as well as the benefits such as antioxidant activity, which can vary according to the cultivation region. This study evaluates the influence of different planting locations on volatiles, color, phenolics, and antioxidant activity in Arabica coffee (Catuaí cultivar) from five Brazilian regions. The coffees were roasted uniformly, analyzed by gas chromatography-mass spectrometry for volatiles, colorimeter for color, and liquid-solid extraction for phenolics (Folin-Ciocalteu) and antioxidant activity [2,2’-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid), 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power]. The data was treated using Analysis of variance and Tukey’s test, as well as boxplot, principal component analysis, and heatmap. The colors varied significantly between the regions. Twenty-seven volatiles were common to the 5 regions, with distinct sensory contributions such as pyridine and acetic acid in coffee from the Rio Paranaíba region, and 1-methylpyrrole for the other regions. For phenolic and antioxidant content, coffee from the Rio Paranaíba region had the highest values. It was possible to see a distinction between the coffees by planting location.
Downloads
Referências
Advancing Standards Transforming Markets. (2023). ASTM D2244-23 Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. In ASTM International (Ed.), Annual Book of ASTM Standards – Section Six: Paints, Related Coatings and Aromatics – Volume 06.01: Paint—tests For Chemical, Physical, And Optical Properties; Appearance. ASTM. https://doi.org/10.1520/D2244-23
Ahmed, S., Brinkley, S., Smith, E., Sela, A., Theisen, M., Thibodeau, C., Warne, T., Anderson, E., Van Dusen, N., Giuliano, P., Ionescu, K. E., & Cash, S. B. (2021). Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Frontiers in Plant Science, 12, Article 708013. https://doi.org/10.3389/fpls.2021.708013
Alcantara, G. M. R. N., Dresch, D., & R. Melchert, W. (2021). Use of non-volatile compounds for the classification of specialty and traditional Brazilian coffees using principal component analysis. Food Chemistry, 360, Article 130088. https://doi.org/10.1016/j.foodchem.2021.130088
Alamri, E., Rozan, M., & Bayomy, H. (2022). A study of chemical Composition, Antioxidants, and volatile compounds in roasted Arabic coffee. Saudi Journal of Biological Sciences, 29(5), 3133–3139. https://doi.org/10.1016/j.sjbs.2022.03.025
Ali, A., Zahid, H. F., Cottrell, J. J., & Dunshea, F. R. (2022). A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules, 27(16), Article 5126. https://doi.org/10.3390/molecules27165126
Alnsour, L., Issa, R., Awwad, S., Albals, D., & Al-Momani, I. (2022). Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules, 27(5), Article 1591. https://doi.org/10.3390/molecules27051591
Al-Shemmeri, M., Fryer, P., Farr, R., & Lopez-Quiroga, E. (2024). Development of coffee bean porosity and thermophysical properties during roasting. Journal of Food Engineering, 378, Article 112096. https://doi.org/10.1016/j.jfoodeng.2024.112096
Associação Brasileira da Indústria de Café. (2021). Qualidade e Pureza. Retrieved January 1, 2025, from https://www.abic.com.br/certificacoes/qualidade/
Association of Official Analytical Collaboration. (2016). Official Methods of Analysis of AOAC International (20th ed.). AOAC.
Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060
Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2012). Use of colour parameters for roasted coffee assessment. Ciencia e Tecnologia de Alimentos, 32(3), 436–442. https://doi.org/10.1590/S0101-20612012005000068
Bilge, G. (2020). Investigating the effects of geographical origin, roasting degree, particle size and brewing method on the physicochemical and spectral properties of Arabica coffee by PCA analysis. Journal of Food Science and Technology, 57(9), 3345–3354. https://doi.org/10.1007/s13197-020-04367-9
Bondam, A. F., Silveira, D. D., Santos, J. P., & Hoffmann, J. F. (2022). Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 123, 172–186. https://doi.org/10.1016/j.tifs.2022.03.013
Borém, F. M., Matias, G. C., Alves, A. P. C., Haeberlin, L., Santos, C. M. dos, & Rosa, S. D. V. F. (2023). Effect of storage conditions on the chemical and sensory quality of pulped natural coffee. Journal of Stored Products Research, 104, Article 102183. https://doi.org/10.1016/j.jspr.2023.102183
Brasil. (2022). Portaria SDA no 570, de 9 de maio de 2022. Estabelece o padrão oficial de classificação do café torrado. Diário Oficial da União. https://www.in.gov.br/en/web/dou/-/portaria-sda-n-570-de-9-de-maio-de-2022-398971389
Bressani, A. P. P., Batista, N. N., Ferreira, G., Martinez, S. J., Simão, J. B. P., Dias, D. R., & Schwan, R. F. (2021). Characterization of bioactive, chemical, and sensory compounds from fermented coffees with different yeasts species. Food Research International, 150, Article 110755. https://doi.org/10.1016/j.foodres.2021.110755
Broadbent, A. D. (2017). Colorimetry, Methods. In J. C. Lindon, G. E. Tranter, & D. W. Koppenaal (Ed.), Encyclopedia of Spectroscopy and Spectrometry (3rd ed., pp. 321–327). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00014-5
Cai, W., Feng, T., Yao, L., Sun, M., Song, S., Wang, H., Yu, C., & Liu, Q. (2024). Characterisation of differential aroma markers in roasted coffee powder samples by GC×GC- TOF- MS and multivariate statistical analysis. Food Bioscience, 59, Article 104207. https://doi.org/10.1016/j.fbio.2024.104207
Cao, X., Wu, H., Viejo, C. G., Dunshea, F. R., & Suleria, H. A. R. (2023). Effects of postharvest processing on aroma formation in roasted coffee – a review. International Journal of Food Science and Technology, 58(3), 1007–1027. https://doi.org/10.1111/ijfs.16261
Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628–640. https://doi.org/10.1016/j.foodres.2018.03.077
Cassamo, C. T., Mangueze, A. V. J., Leitão, A. E., Pais, I. P., Moreira, R., Campa, C., Chiulele, R., Reis, F. O., Marques, I., Scotti-Campos, P., Lidon, F. C., Partelli, F. L., Ribeiro-Barros, A. I., & Ramalho, J. C. (2022). Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique. Agronomy, 12(10), Article 2540. https://doi.org/10.3390/agronomy12102540
Chang, Y.-T., Hsueh, M.-C., Hung, S.-P., Lu, J.-M., Peng, J.-H., & Chen, S.-F. (2021). Prediction of specialty coffee flavors based on near-infrared spectra using machine and deep-learning methods. Journal of the Science of Food and Agriculture, 101(11), 4705–4714. https://doi.org/10.1002/jsfa.11116
Chen, S., Wang, L., Ni, D., Lin, L., Wang, H., & Xu, Y. (2021). Characterization of aroma compounds in cooked sorghum using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and gas chromatography-olfactometry-mass spectrometry. Molecules, 26(16), Article 4796. https://doi.org/10.3390/molecules26164796
Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science and Technology, 57, 20–30. https://doi.org/10.1016/j.tifs.2016.09.003
Cheong, M. W., Tong, K. H., Ong, J. J. M., Liu, S. Q., Curran, P., & Yu, B. (2013). Volatile composition and antioxidant capacity of Arabica coffee. Food Research International, 51(1), 388–396. https://doi.org/10.1016/j.foodres.2012.12.058
Companhia Nacional de Abastecimento. (2025). Acompanhamento da safra brasileira de café. Retrieved January 22, 2025, from http://www.conab.gov.br
Cwiková, O., Komprda, T., Šottníková, V., Svoboda, Z., Simonová, J., Slováček, J., & Jůzl, M. (2022). Effects of Different Processing Methods of Coffee Arabica on Colour, Acrylamide, Caffeine, Chlorogenic Acid, and Polyphenol Content. Foods, 11(20), 3295. https://doi.org/10.3390/foods11203295
Dryahina, K., Smith, D., & Španěl, P. (2018). Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 32(9), 739–750. https://doi.org/10.1002/rcm.8095
Empresa Brasileira de Pesquisa Agropecuária. (2023, May 30). Produtividade média dos Cafés do Brasil equivale a 28,9 sacas por hectare em 2023. https://www.embrapa.br/busca-de-noticias/-/noticia/80992551/produtividade-media-dos-cafes-do-brasil-equivale-a-289-sacas-por-hectare-em-2023?p_auth=jwNTVAZl
Freitas, V. V., Borges, L. L. R., Castro, G. A. D., Almeida, L. F., Crepalde, L. T., Kobi, H. B., Vidigal, M. C. T. R., Santos, M. H., Fernandes, S. A., Maitan-Alfenas, G. P., & Stringheta, P. C. (2024). Influence of roasting levels on chemical composition and sensory quality of Arabica and Robusta coffee: A comparative study. Food Bioscience, 59, Article 104171. https://doi.org/10.1016/j.fbio.2024.104171
Freitas, V. V., Borges, L. L. R., Castro, G. A. D., Santos, M. H., Vidigal, M. C. T. R., Fernandes, S. A., & Stringheta, P. C. (2023). Impact of different roasting conditions on the chemical composition, antioxidant activities, and color of Coffea canephora and Coffea arabica L. samples. Heliyon, 9(9), Article e19580. https://doi.org/10.1016/j.heliyon.2023.e19580
Frost, S. C., Walker, P., Orians, C. M., & Robbat, A. (2022). The Chemistry of Green and Roasted Coffee by Selectable 1D/2D Gas Chromatography Mass Spectrometry with Spectral Deconvolution. Molecules, 27(16), Article 5328. https://doi.org/10.3390/molecules27165328
Internacional Coffee Organization. (2022). Annual review Coffee year 2021/2022. Retrieved April 25, 2025, from https://www.ico.org/documents/cy2022-23/annual-review-2021-2022-e.pdf
Jiménez-Morales, W. A., & Cañizares-Macias, M. P. (2024). Fast FRAP-SIA method to determine antioxidant capacity. Talanta, 273, Article 125813. https://doi.org/10.1016/j.talanta.2024.125813
Kitzberger, C. S. G., Scholz, M. B. S., & Benassi, M. T. (2014). Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions. Food Research International, 61, 61–66. https://doi.org/10.1016/j.foodres.2014.04.031
Koníčková, D., Menšíková, K., Plíhalová, L., & Kaňovský, P. (2024). Effects of active compounds and their metabolites associated with coffee consumption on neurodegenerative disease. Nutrition Research Reviews, 1–6. https://doi.org/10.1017/S0954422424000349
Liao, Y.-C., Kim, T., Silva, J. L., Hu, W.-Y., & Chen, B.-Y. (2022). Effects of roasting degrees on phenolic compounds and antioxidant activity in coffee beans from different geographic origins. LWT, 168, Article 113965. https://doi.org/10.1016/j.lwt.2022.113965
Marek, G., Dobrzański, B., Oniszczuk, T., Combrzyński, M., Ćwikła, D., & Rusinek, R. (2020). Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS. Sensors (Switzerland), 20(7), Article 2124. https://doi.org/10.3390/s20072124
Mestanza, M., Mori-Culqui, P. L., & Chavez, S. G. (2023). Changes of polyphenols and antioxidants of arabica coffee varieties during roasting. Frontiers in Nutrition, 10, Article 1078701. https://doi.org/10.3389/fnut.2023.1078701
Mourão, R. S., Sanson, A. L., & Martucci, M. E. P. (2023). HS-SPME-GC-MS combined with metabolomic approach to discriminate volatile compounds of Brazilian coffee from different geographic origins. Food Bioscience, 56, Article 103395. https://doi.org/10.1016/j.fbio.2023.103395
Mullen, W., Nemzer, B., Stalmach, A., Ali, S., & Combet, E. (2013). Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. Journal of Agricultural and Food Chemistry, 61(22), 5298–5309. https://doi.org/10.1021/jf4003126
Musa, K. H., Abdullah, A., & Al-Haiqi, A. (2016). Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chemistry, 194, 705–711. https://doi.org/10.1016/j.foodchem.2015.08.038
Odžaković, B., Džinić, N., Kukrić, Z., & Grujić, S. (2016). Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(4), 409–417. https://doi.org/10.17306/J.AFS.2016.4.39
Pisoschi, A. M., & Negulescu, G. P. (2011). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 1(1), Article 106. https://doi.org/10.4172/2161-1009.1000106
Pramudita, D., Araki, T., Sagara, Y., & Tambunan, A. H. (2017). Roasting and Colouring Curves for Coffee Beans with Broad Time-Temperature Variations. Food and Bioprocess Technology, 10(8), 1509–1520. https://doi.org/10.1007/s11947-017-1912-5
Ramanda, M. R., Prameswari, A. F., & Ulfa, M. N. (2024). Effect of Variations of Roasting Temperature on the Physicochemical Properties of Robusta Coffee (Coffea canephora L.). Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 13(2), Article 405. https://doi.org/10.23960/jtep-l.v13i2.405-417
Ramírez-Correa, P., Rondán-Cataluña, F. J., Moulaz, M. T., & Arenas-Gaitán, J. (2020). Purchase intention of specialty coffee. Sustainability (Switzerland), 12(4), Article 1329. https://doi.org/10.3390/su12041329
Rana, Md. S., Rayhan, N. M. A., Emon, Md. S. H., Islam, Md. T., Rathry, K., Hasan, Md. M., Mansur, Md. M. I., Srijon, B. C., Islam, M. S., Ray, A., Rakib, Md. A., Islam, A., Kudrat-E-Zahan, Md., Hossen, Md. F., & Asraf, Md. A. (2024). Antioxidant activity of Schiff base ligands using the DPPH scavenging assay: an updated review. RSC Advances, 14(45), 33094–33123. https://doi.org/10.1039/D4RA04375H
Raveendran, A., & Murthy, P. S. (2022). New trends in specialty coffees - “the digested coffees”. Critical Reviews in Food Science and Nutrition, 62(17), 4622–4628. https://doi.org/10.1080/10408398.2021.1877111
Rufino, M. S., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pelo Método de Redução do Ferro (FRAP). Embrapa.
Rufino, M. S., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS●+. Embrapa.
Rusinek, R., Dobrzański, B., Oniszczuk, A., Gawrysiak-Witulska, M., Siger, A., Karami, H., Ptaszyńska, A. A., Żytek, A., Kapela, K., & Gancarz, M. (2022). How to Identify Roast Defects in Coffee Beans Based on the Volatile Compound Profile. Molecules, 27(23), Article 8530. https://doi.org/10.3390/molecules27238530
Santos, E. M., Macedo, L. M., Tundisi, L. L., Ataide, J. A., Camargo, G. A., Alves, R. C., Oliveira, M. B. P. P., & Mazzola, P. G. (2021). Coffee by-products in topical formulations: A review. Trends in Food Science and Technology, 111, 280–291. https://doi.org/10.1016/j.tifs.2021.02.064
Shen, X., Wang, Q., Zheng, T., Li, X., Zheng, J., Yin, Z., Liu, K., Zhang, J., & Yuan, W. (2025). Enhanced fermentation with Lactiplantibacillus plantarum improved coffee flavor by changing microbial communities and organic compounds of Coffea arabica. LWT, 215, Article 117298. https://doi.org/10.1016/j.lwt.2024.117298
Somporn, C., Kamtuo, A., Theerakulpisut, P., & Siriamornpun, S. (2011). Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). International Journal of Food Science and Technology, 46(11), 2287–2296. https://doi.org/10.1111/j.1365-2621.2011.02748.x
Specialty Coffee Association. (2024). A System to Assess Coffee Value: Understanding the Specialty Coffee Association’s Coffee Value Assessment. Retrieved January 20, 2025, from https://sca.coffee/research/coffee-standards
Strocchi, G., Bagnulo, E., Ravaioli, G., Pellegrino, G., Carlo, B., & Liberto, E. (2023). Evaluation of the behaviour of phenols and alkaloids in samples of roasted and ground coffee stored in different types of packaging: Implications for quality and shelf life. Food Research International, 174, Article 113548. https://doi.org/10.1016/j.foodres.2023.113548
Surma, S., & Oparil, S. (2021). Coffee and Arterial Hypertension. Current Hypertension Reports, 23, 38. https://doi.org/10.1007/s11906-021-01156-3
Tieghi, H., Pereira, L. A., Viana, G. S., Katchborian-Neto, A., Santana, D. B., Mincato, R. L., Dias, D. F., Chagas-Paula, D. A., Soares, M. G., Araújo, W. G., & Bueno, P. C. P. (2024). Effects of geographical origin and post-harvesting processing on the bioactive compounds and sensory quality of Brazilian specialty coffee beans. Food Research International, 186, Article 114346. https://doi.org/10.1016/j.foodres.2024.114346
Tripetch, P., & Borompichaichartkul, C. (2019). Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant activity in arabica green coffee beans (Coffea arabica L. cv. Catimor). Journal of Stored Products Research, 84, Article 101510. https://doi.org/10.1016/j.jspr.2019.101510
Tuberoso, C. I. G., Jerković, I., Sarais, G., Congiu, F., Marijanović, Z., & Kuś, P. M. (2014). Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L* C*abh°ab chromaticity coordinates. Food Chemistry, 145, 284–291. https://doi.org/10.1016/j.foodchem.2013.08.032
Volsi, B., Telles, T. S., Caldarelli, C. E., & Camara, M. R. G. (2019). The dynamics of coffee production in Brazil. PLoS One, 14(7), Article e0219742. https://doi.org/10.1371/journal.pone.0219742
Wolfenden, B. S., & Willson, R. L. (1982). Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin Transactions 2, 7, 805–812. https://doi.org/10.1039/P29820000805
Wu, H., Gu, J., BK, A., Nawaz, M. A., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2022). Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Bioscience, 46, Article 101373. https://doi.org/10.1016/j.fbio.2021.101373
Wu, H., Liu, Z., Lu, P., Barrow, C., Dunshea, F. R., & Suleria, H. A. R. (2022). Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chemistry, 386, Article 137294. https://doi.org/10.1016/j.foodchem.2022.132794
Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124