Bioactive compounds, antioxidant activity, and maturation effects in bitter and sweet orange juices
DOI:
https://doi.org/10.5327/fst.00446Palavras-chave:
vitamin C, 2,2-diphenyl-1-picrylhydrazyl, flavonoids, phenolicsResumo
Bitter oranges (Citrus aurantium) and sweet oranges (Citrus sinensis) are commercially important citrus fruits with distinct uses and characteristics. Bitter oranges, primarily used as a flavoring agent, are rich in bioactive compounds, while sweet oranges dominate global citrus juice production. This study evaluated bitter orange juice at three maturation stages, comparing its physical, chemical, and bioactive properties with pasteurized pear orange juice (C. sinensis). Parameters assessed included water activity, pH, total titratable acidity, total soluble solids, maturation index, vitamin C content, total phenolic (TP) content, total flavonoid (TF) content, and antioxidant activity. The results showed that the vitamin C content in bitter oranges decreased with ripening but remained comparable to pear orange juice in the ripe stage. TPs and TFs were highest in pasteurized pear orange juice, reflecting the stability of these compounds during thermal processing. The antioxidant activity varied significantly across bitter orange maturation stages, with intermediate fruits demonstrating the strongest capacity. However, the maturation stage had limited influence on the antioxidant activity compared to pear orange juice. Bitter orange juices, despite being less commercially prominent, offer distinct bioactive advantages and antioxidant potential. Future research should explore optimizing maturation and processing methods to enhance the nutritional and functional properties of bitter orange juices.
Downloads
Referências
Alegre, G. F. S., & Sylos, C. M. (2015). Uso de ensaio MTT para determinação da capacidade antioxidante em sucos de laranja. Alimentos e Nutrição, 25(1).
Andrade, R. S. G., Diniz, M. C. T., Neves, E. A., & Nóbrega, J. A. (2002). Determination and distribution of ascorbic acid in three tropical fruits. Eclética Química, 27(1SI), 393-401. https://doi.org/10.26850/1678-4618eqj.v27.1SI.2002.p393-401
Bastos, D. C., Sombra, K. E. S., de Andrade, H. M., dos Santos Filho, L. G., & Passos, O. S. (2017). Biometric evaluation of orange cultivars using different rootstocks in the semiarid region of Ceará, Brazil. Citrus Research & Technology, 38(1), 71-76. https://doi.org/10.4322/crt.ICC036
Biesaga, M. (2011). Influence of extraction methods on stability of flavonoids. Journal of Chromatography A, 1218(18), 2505-2512. https://doi.org/10.1016/j.chroma.2011.02.059
Brasil (2018). Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Instrução Normativa n° 37, de 01 de outubro de 2018. Analytical parameters and additional requirements for identity and quality standards of fruit juice. Brazilian Official Gazette, 194(Section 1), 26. Retrieved from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=515&pagina=26&data=08/10/2018
Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C. Chekir, L., & Ghoul, M. (2017). Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5), e13203. https://doi.org/10.1111/jfpp.13203
Danieli, F., da Costa, L. R. L. G., da Silva, L. C., Hara, A. S. S., & da Silva, A. A. (2009). Determination of vitamin C in sample orange juice in natura and commercials samples of orange juice pasteurized and bottled in Tetra Pak packages. Revista do Instituto de Ciências da Saúde, 27(4), 361-365.
Domingues, A. R., Marcolini, C. D. M., Gonçalves, C. H. d. S., Gonçalves, L. S. A., Roberto, S. R., & Carlos, E. F. (2021). Fruit ripening development of ‘Valencia’ orange trees grafted on different ‘Trifoliata’ hybrid rootstocks. Horticulturae, 7(1), 3. https://doi.org/10.3390/horticulturae7010003
Duzzioni, A. G., Franco, A. G., & de Sylos, C. M. (2009). Radical scavenging activity of orange and tangerine varieties cultivated in Brazil. International Journal of Food Sciences and Nutrition, 60(6), 107-115. https://doi.org/10.1080/09637480902769575
Ersus, S., & Cam, M. (2007). Determination of organic acids, total phenolic content, and antioxidant capacity of sour Citrus aurantium fruits. Chemistry of Natural Compounds, 43(5), 607-609. https://doi.org/10.1007/s10600-007-0203-1
Espín, J. C., Soler-Rivas, C., & Wichers, H. J. (2000). Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. Journal of Agricultural and Food Chemistry, 48(3), 648-656. https://doi.org/10.1021/jf9908188
Fattahi, S., Zabihi, E., Abedian, Z., Pourbagher, R., Motevalizadeh Ardekani, A., Mostafazadeh, A., & Akhavan-Niaki, H. (2014). Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines. International Journal of Molecular and Cellular Medicine, 3(2), 102-107.
Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50(17), 4976-4982. https://doi.org/10.1021/jf020136b
Instituto Adolfo Lutz (IAL) (2008). Analytical Standards of the Adolfo Lutz Institute: Physicochemical Methods for Food Analysis. IAL.
Karabiyikli, S., Degirmenci, D., & Karapinar, M. (2014). Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT - Food Science and Technology, 55(2), 421-425. https://doi.org/10.1016/j.lwt.2013.10.037
Karadeniz, F. (2004). Main organic acid distribution of authentic citrus juices in Turkey. Turkish Journal of Agricultural Forestry, 28(4), 267-271.
Karoui, I. J., & Marzouk, B. (2013). Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. Biomed Research International, 2013, 345415. https://doi.org/10.1155/2013/345415
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132
Lu, Q., Peng, Y., Zhu, C., & Pan, S. (2018). Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange cv. Cara Cara. Food Chemistry, 265, 39-48. https://doi.org/10.1016/j.foodchem.2018.05.072
Mannucci, C., Calapai, F., Cardia, L., Inferrera, G., D'Arena, G., Di Pietro, M., Navarra, M., Gangemi, S., Spagnolo, E. V., & Calapai, G. (2018). Clinical pharmacology of Citrus aurantium and Citrus sinensis for the treatment of anxiety. Evidence Based Complementary and Alternative Medicine, 2018, 3624094. https://doi.org/10.1155/2018/3624094
Moufida, S., & Marzouk, B. (2003). Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry, 62(8), 1283-1289. https://doi.org/10.1016/S0031-9422(02)00631-3
Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39, 74-80. https://doi.org/10.1016/j.indcrop.2012.02.013
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1984. https://doi.org/10.3390/ma14081984
Schmidt, S. J., & Fontana Jr., A. J. (2020). E: Water activity values of select food ingredients and products. In G. V. Barbosa-Cádovas, A. J. Fontana Jr., S. J. Schmidt & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (2nd ed., pp. 573-591). https://doi.org/10.1002/9781118765982.app5
Seminara, S., Bennici, S., Di Guardo, M., Caruso, M., Gentile, A., La Malfa, S., & Distefano, G. (2023). Sweet orange: Evolution, characterization, varieties, and breeding perspectives. Agriculture, 13(2), 264. https://doi.org/10.3390/agriculture13020264
Singh, A., Raju, R., Mrad, M., Reddell, P., & Münch G. (2020). The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products. Fitoterapia, 143, 104598, https://doi.org/10.1016/j.fitote.2020.104598
Souza, D. R., Bruniera, L. B., & dos Santos, F. P. (2018). Stability of the ascorbic acid in industrialized citric juice, stored under simulate conditions of domestic consumption. Revista Terra & Cultura: Cadernos de Ensino e Pesquisa, 25(48-49), 26-35.
Souza, L. F. S., Domingos, L. F., Farias, V. L. S., & Luzia, D. M. M. (2017). Evaluation physical-chemical and stability of ascorbic acid in fruit juices marketed in city of Frutal, Minas Gerais, Brazil. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(4), 791-797. https://doi.org/10.18378/rvads.v12i4.4184
Spitzer, P., & Werner, B. (2002). Improved reliability of pH measurements. Analytical and Bioanalytical Chemistry, 374, 787-795. https://doi.org/10.1007/s00216-002-1453-1
Stinco, C. M., Sentandreu, E., Mapelli-Brahm, P., Navarro, J. L., Vicario, I. M., & Meléndez-Martínez, A. J. (2020). Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 331, 127259. https://doi.org/10.1016/j.foodchem.2020.127259
Sugai, Á. Y., Shigeoka, D. S., Badolato, G. G., & Tadini, C. C. (2002). Physico-chemical and microbiological analyses of minimally processed orange juice stored in aluminium cans. Food Science and Technology, 22(3), 233-238. https://doi.org/10.1590/S0101-20612002000300006
TACO (2011). Brazilian Food Composition Table. Unicamp/Neppa. Retrieved from http://www.unicamp.br/nepa/taco/
Wen, L., He, M., Yin, C., Jiang, Y., Luo, D., & Yang, B. (2021). Phenolics in Citrus aurantium fruit identified by UHPLC-MS/MS and their bioactivities. LWT - Food Science and Technology, 147, 111671. https://doi.org/10.1016/j.lwt.2021.111671
Wibowo, S., Grauwet, T., Santiago, J. S., Tomic, J., Vervoort, L., Hendrickx, M., & van Loey, A. (2015). Quality changes of pasteurised orange juice during storage - A kinetic study of specific parameters and their relation to colour instability. Food Chemistry, 187, 140-151. https://doi.org/10.1016/j.foodchem.2015.03.131
Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., Martínez, M., Anadón, A., & Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. https://doi.org/10.1016/j.foodchem.2021.129488