Quinoa-derived biopeptides with antioxidant activity and their applications in the pharmaceutical and food industries

Autores

DOI:

https://doi.org/10.5327/fst.00444

Palavras-chave:

Chenopodium quinoa, pseudocereal, antioxidant, hydrolysates, biopeptides

Resumo

Bioactive peptides resulting from the hydrolysis of proteins in Chenopodium quinoa Willd. play significant roles in the body as they exhibit a range of biological functions relevant to human health. Enzymatic hydrolysis has been identified as a sustainable and efficient method for bioactive peptide extraction, minimizing environmental impact and maximizing yield. The challenge was to review and compare methodologies for obtaining peptides from protein concentrates and hydrolysates with antioxidant capabilities. Peptides and amino acids with functional properties can be used in the food and pharmaceutical industries, demonstrating significant biological activity (e.g., antioxidant and anti-inflammatory). This highlights Chenopodium quinoa as a valuable source of bioactives, though further in silico and in vivo studies are necessary to fully characterize and validate their potential.

Downloads

Não há dados estatísticos.

Referências

Abbasi, S., Moslehishad, M., & Salami, M. (2022). Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. International Journal of Biological Macromolecules, 213, 602-609. https://doi.org/10.1016/j.ijbiomac.2022.05.189

Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional and functional properties. Advances in Food and Nutrition Research, 58, 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1

Agyei, D., & Danquah, M. (2011). Fabricación a escala industrial de péptidos bioactivos de grado farmacéutico. Biotechnology Advances, 29(3), 272-277. https://doi.org/10.1016/j.biotechadv.2011.01.001

Ahumada, A., Ortega, A., Chito, D., & Benitez, R. (2016). Saponinas de quinua (Chenopodium quinoa Willd.): un subproducto con alto potencial biológico. Revista Colombiana de Ciencias Químico-Farmacéuticas, 45(3), 438-469. https://doi.org/10.15446/rcciquifa.v45n3.62043

Alandia, G., Odone, A., Rodriguez, J. P., Bazile, D., & Condori, B. (2021). Quinoa - Evolution and future perspectives. In S. Schmöckel (ed.), The quinoa genome (pp. 179-195). Springer. (Compendium of Plant Genomes.) https://doi.org/10.1007/978-3-030-65237-1_11

Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. https://doi.org/10.1016/j.gfs.2020.100429

Anaya-González, R., Mamani, R., & Cóndor, R. (2019). Primary metabolites in four accessions of Chenopodium quinoa Willd in three districts of Ayacucho-Peru. Revista Boliviana de Química, 36(1), 1-9. https://doi.org/10.34098/2078-3949.36.1.1

Barba de la Rosa, A., Fomsgaard, I., Laursen, B, Mortensen, A., Olvera-Martínez, J., Silva-Sánchez, C., Mendoza-Herrera, A., De León-Rodríguez, A., & González-Castañeda, J. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49(1), 117-121. https://doi.org/10.1016/j.jcs.2008.07.012

Bazile, D., & Santivañez, T. (2015). Introduction to the state of the art report on quinoa around the world in 2013. In D. Bazile, H. D. Bertero, & C. Nieto (Eds.), State of the art report on quinoa around the world in 2013 (pp. 1-2). FAO. Retrieved from https://publications.cirad.fr/une_notice.php?dk=575492

Bazile, D., Jacobsen, S. E., & Verniau, A. (2016). The global expansion of quinoa: Trends and limits. Frontiers in Plant Science, 7, 622. https://doi.org/10.3389/fpls.2016.00622

Bravo, F., Espinoza, C., Ganoza, L., Gómez, I., & Reyes, M. (2009). Peruvian food composition tables. National Center of Foods and Nutrition, National Institute of Health.

Budakli Carpici, E., Erol, S., Aşik, B. B., & Arslan, Ö. (2023). Influences of sowing date and harvest stage on dry matter yield and forage quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops, 28(1), 26-36. https://doi.org/10.17557/tjfc.1226196

Cao, Y., Liang, Z., Wei, L., Yu, S., Gang, Z., & Yichen, H. (2020). Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules, 163, 55-65. https://doi.org/10.1016/j.ijbiomac.2020.06.241

Capraro, J., De Benedetti, S., Heinzl G., Scarafoni, A., & Magni, C. (2021). Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. International Journal of Molecular Sciences, 22(7), 3543. https://doi.org/10.3390/ijms22073543

Chirinos, R., Escobar-Mendoza, N., Figueroa-Merma A., Valente de Oliveira, T., Guzmán, F., Pedreschi, R., & Campos, D. (2023). Evaluation of the antihypertensive and antidiabetic potential of peptides from the globulin fraction of quinoa (Chenopodium quinoa) by an in silico and in vitro approach. International Journal of Food Science Technology, 58(8), 4386-4396. https://doi.org/10.1111/ijfs.16544

Cisneros-Yupanqui, M., Pedreschi, R., Aguilar-Galvez, A., Chirinos, R., & Campos, D. (2022). Journal of Microbiology, Biotechnology and Food Sciences, 12(1), e2686. https://doi.org/10.55251/jmbfs.2686

Codex Alimentarius (2019). International Food Standards. Standard for quinoa - CXS 333-2019. FAO/WHO.

Constantino, A., & García‐Rojas, E. (2022). Proteins from pseudocereal seeds: solubility, extraction, and modifications of the physicochemical and techno‐functional properties. Journal of the Science of Food and Agriculture, 102(7), 2630-2639. https://doi.org/10.1002/jsfa.11750

Covarrubias, N., Sandoval, S., Vera, J., Núñez, C., Alfaro, Ch., & Lutz, M. (2020). Contenido de humedad, proteínas y minerales en diez variedades de quinoa chilena cultivadas en distintas zonas geográficas. Revista Chilena de Nutrición, 47(5), 730-737. https://doi.org/10.4067/s0717-75182020000500730

Daliri, H., Ahmadi, R., Pezeshki, A., Hamishehkar, H., Mohammadi, M., Beyrami, H., Khakbaz, M., & Ghorbani, M. (2021). Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. LWT, 150, 111853. https://doi.org/10.1016/j.lwt.2021.111853

De Bock, P., Cnops, G., Muylle, H., Quataert, P., Eeckhout, M., & Van Bockstaele, E. (2021). Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa Willd.) varieties grown in north-west Europe—Part I. Plants, 10(12), 2689. https://doi.org/10.3390/plants10122689

De Ron, A., Sparvoli, F., Pueyo, J., & Bazile, D. (2017). The challenge of protein crops as a sustainable source of food and feed for the future. Frontiers Media (Frontiers Research Topics.)

Díaz, P. (2016). Desarrollo de un proceso para la obtención de un aislado proteico a partir de la harina de quinua (Chenopodium quinoa) para su evaluación potencial en la industria. Escuela Politécnica Nacional. Retrieved from http://bibdigital.epn.edu.ec/handle/15000/16837

Dostalíková, L., Hlásná Čepková, P., Janovská, D., Svoboda, P., Jágr, M., Dvořáček, V., & Viehmannová, I. (2023). Nutritional evaluation of quinoa genetic resources growing in the climatic conditions of Central Europe. Foods, 12(7), 1440. https://doi.org/10.3390/foods12071440

Durand, E., Beaubier, S., Ilic, Fine, F., Kapel, R., & Villeneuve, P. (2021). Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Current Research in Food Science, 4, 365-397. https://doi.org/10.1016/j.crfs.2021.05.006

Elsohaimy, S., Refaay, T., & Zaytoun, M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305. https://doi.org/10.1016/j.aoas.2015.10.007

Esfandi, R., Willmore, W. G., & Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49-57. https://doi.org/10.1016/j.foodchem.2018.11.110

Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564. https://doi.org/10.1016/j.indcrop.2017.04.035

Food and Agriculture Organization (FAO) (2018). Procedural Manual of the Codex Alimentarius Commission (26th ed.) FAO. Retrieved from http://www.fao.org/documents/card/es/c/I8608EN/.

Fuentes, F., & Paredes-Gónzalez, X. (2015). Nutraceutical perspectives of quinoa: biological properties and functional applications. In B. Didier, B. H. Daniel & C. Nieto (eds.), State of the art report on quinoa around the world in 2013 (pp. 286-299). FAO. https://doi.org/10.13140/RG.2.1.4294.2565

Gleeson, J. P., Brayden, D. J., & Ryan, S. M. (2017). Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. European Journal of Pharmaceutics and Biopharmaceutics, 115, 276-284. https://doi.org/10.1016/j.ejpb.2017.03.007

Gonzalez, J. A., Konishi, Y., Bruno, M., Valoy, M., & Prado, F. E. (2012). Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of Science Food Agriculture, 92(6), 1222-1229. https://doi.org/10.1002/jsfa.4686

González, J. A., Yousif, S. K., Erazzu, L. E., Martinez Calsina, L., Lizarraga, E. F., Omer, R. M., Bazile, D., Fernandez-Turriel, J. L., Buedo, S. E., Rejas, M., Fontana, P. D., González, D. A., Alzuaibr, F. M., Al-Qahtani, S. M., Al-Harbi, N. A., Ibrahim, M. F. M. & Van Nieuwenhove, C. P. (2023). Effects of goat manure fertilization on grain nutritional value in two contrasting quinoa (Chenopodium quinoa Willd.) varieties cultivated at high altitudes. Agronomy, 13(3), 918. https://doi.org/10.3390/agronomy13030918

González-Muñoz, A., Valle, M., Aluko, R., Laurent Bazinet, & Enrione. J. (2022). Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. Food Science and Human Wellness, 11(6), 1650-1659. https://doi.org/10.1016/j.fshw.2022.06.024

Granado-Rodríguez, S., Vilariño-Rodríguez, S., Maestro-Gaitán, I., Matías, J., Rodríguez, M. J., Calvo, P., Cruz, V., Bolaños, L., & Reguera, M. (2021). Genotype-dependent variation of nutritional quality-related traits in quinoa seeds. Plants, 10(10), 2128. https://doi.org/10.3390/plants10102128

Guixing, R., Cong, T., Xin, F., Shengyuan, G., Pandilla, Z., Lizhen, Z., Zou, L. & Peiyou, Q. (2023). Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 410, 135290. https://doi.org/10.1016/j.foodchem.2022.135290

Guo, H., Hao, Y., Yang, X., Ren, G., & Richel, A. (2023). Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review. Critical Reviews in Food Science and Nutrition, 63(16), 2896-2909. https://doi.org/10.1080/10408398.2021.1982860

Jukka-Pekka, S., Repo-Carrasco-Valencia, R., & Lutz, M. (2022). Native grains, quinoa, and lupin as sources of bioactive components. In R. Repo-Carrasco-Valencia & M. C. Tomás (Eds.), Native Crops in Latin America (pp. 34). CRC Press. https://doi.org/10.1201/9781003087618

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0

Lee, S. Y., & Hur, S. J. (2019). Purification of novel angiotensin converting enzyme inhibitory peptides from beef myofibrillar proteins and analysis of their effect in spontaneously hypertensive rat model. Biomedicine & Pharmacotherapy, 116, 109046. https://doi.org/10.1016/j.biopha.2019.109046

Li, H., Wang, Q., Huang, T., Liu, J., Zhang, P., Li, L., Xie, H., Wang, H., Liu, C., & Qin, P. (2023). Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers. International Journal of Molecular Sciences, 24(14), 11580. https://doi.org/10.3390/ijms241411580

Lung’aho, M., Fenta, A. B., Wanderi, S., Otim, A., Mwaba, C., Nyakundi, F., & Abang, M. M. (2020). Protein and amino acid composition of different Quinoa (Chenopodium quinoa Willd) cultivars grown under field conditions in Ethiopia, Kenya, Uganda, and Zambia. African Journal of Food, Agriculture, Nutrition and Development, 20(5), 16563-16584. https://doi.org/10.18697/AJFAND.93.19960

Lutz, M., & Bascuñan-Godoy, L. (2017). The revival of quinoa: a crop for health. In V. Waisundara & N. Shiomi (Eds.), Superfood and functional food: an overview and its utilization to processed foods (pp. 37-54). In Tech Open. https://doi.org/10.5772/65451

Maestro-Gaitán, I., Granado-Rodríguez, S., Poza-Viejo, L., Matías, J., Márquez-López, J. C., Pedroche, J. J., Cruz, V., Bolaños, L., & Reguera, M. (2023). Quinoa plant architecture: A key factor determining plant productivity and seed quality under long-term drought. Environmental and Experimental Botany, 211, 105350. https://doi.org/10.1016/j.envexpbot.2023.105350

Martínez, E. A., Maureira, H., Miranda, M., Quispe, I., Rodríguez, M., & Vega, A. (2019). Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas of Chile. Chilean Journal of Agricultural Research, 72(2), 175-182. https://doi.org/10.4067/S0718-58392012000200002

Matías, G., Hernández, B., Peña, V., Torres, N., Espinoza, V., & Ramírez, L. (2018). Usos actuales y potenciales del Amaranto (Amaranthus spp.). Journal of Negative and No Positive Results, 3(6), 423-436. https://doi.org/10.19230/jonnpr.2410

Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM: database of bioactive peptides: current opportunities. International Journal of Molecular Sciences, 20(23), 5978. https://doi.org/10.3390/ijms20235978

Montone, C. M., Capriotti, A. L., Cavaliere, C., La Barbera, G., Piovesana, S., Zenezini-Chiozzi, R., & Lagana, A. (2018). Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Analytical and Bioanalytical Chemistry, 410(15), 3573-3586. https://doi.org/10.1007/s00216-018-0925-x

Morales, D., Miguel, M., & Garcés-Rimón, M. (2020). Pseudocereals: a novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition, 61(9), 1537-1544. https://doi.org/10.1080/10408398.2020.1761774

Mudgil, P., Priya, B., Kamal, H., Abayomi, O., Fitz, R., Chee-Yuen, G., & Maqsood, S. (2020). Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science, 96, 103130. https://doi.org/10.1016/j.jcs.2020.103130

Nguyen, V. M., & Chuyen, H. V. (2023). Effects of planting density, fertilization and growing season on the nutritional composition of 10 quinoa varieties (Chenopodium quinoa Willd.) cultivated in the Central Highlands of Vietnam. IOP Conference Series: Earth and Environmental Science, 1155(1), 012007. https://doi.org/10.1088/1755-1315/1155/1/012007

Nongonierma, B., Maux, S. L., Dubrulle, C., Barre, C., & Fitz-Gerald, R. J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112-118. https://doi.org/10.1016/j.jcs.2015.07.004

Noulas, C., Tziouvalekas, M., Vlachostergios, D., Baxevanos, D., Karyotis, T., & Iliadis, C. (2017). Adaptation, agronomic potential and current perspectives of quinoa under Mediterranean conditions: Case studies from the lowlands of central Greece. Communications in Soil Science and Plant Analysis, 48(22), 2612-2629. https://doi.org/10.1080/00103624.2017.1416129

Nowak, V., Du, J., & Charrondiere, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd). Food Chemistry, 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111

Ochoa, K. G. (2017). Hidrólisis enzimática en una y dos etapas de la proteína de la cañihua Chenopodium pallidicaule Aellen para obtener péptidos bioactivos (Tesis maestría, Universidad Nacional Agraria La Molina). Retrieved from http://repositorio.lamolina.edu.pe/handle/UNALM/3055

Olivera-Montenegro, L., Bugarin, A., Marzano A., Best I., Zabot, G., & Romero, H. (2022). Production of protein hydrolysate from quinoa (Chenopodium quinoa Willd.): economic and experimental evaluation of two pretreatments using supercritical fluids’ extraction and conventional solvent extraction. Foods, 11(7), 1015. https://doi.org/10.3390/foods11071015

Osborne, T. B. (1924). The vegetable proteins. In R. H. Plimmer & F. G. Hopkins (Eds.), Monographs on Biochemistry (2th ed.). Longmans, Green and Co.

Oustani, M., Mehda, S., Halilat, M. T., & Chenchouni, H. (2023). Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Scientific Reports, 13(1), 1991. https://doi.org/10.1038/s41598-023-29039-4

Parvez, S., Abbas, G., Shahid, M., Amjad, M., Hussain, M., Asad, SA, ... y Naeem, MA (2020). Efecto de la salinidad sobre los atributos fisiológicos, bioquímicos y fotoestabilizadores de dos genotipos de quinua (Chenopodium quinoa Willd.) expuestos a estrés por arsénico. Ecotoxicología y Seguridad Ambiental, 187, 109814. https://doi.org/10.1016/j.ecoenv.2019.109814

Pereira, E., Cadavez, V., Barros, L., Encina-Zelada, C., Stojković, D., Sokovic, M., Calhelha, R. C., Gonzales-Barron, U., & Ferreira I. C. F. R. (2022). Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International, 137, 109574. https://doi.org/10.1016/j.foodres.2020.109574

Ren, Y., Wu, H., Li, X., Lai, F., & Xiao, X. (2014). Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates. Biochemical and Biophysical Research Communications, 452(4), 888-894. https://doi.org/10.1016/j.bbrc.2014.08.116

Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179-189. https://doi.org/10.1081/FRI-120018884

Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita, A., Bazile, D., Jacobsen, S. E., & Molina Montenegro, M. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349-359. https://doi.org/10.1007/s13593-013-0195-0

Sadak, M. Sh., & Bakhoum, G. Sh. (2022). Selenium-induced modulations in growth, productivity and physiochemical responses to water deficiency in quinoa (Chenopodium quinoa) grown in sandy soil. Biocatalysis and Agricultural Biotechnology, 44, 102449. https://doi.org/10.1016/j.bcab.2022.102449

Selamassakul, O., Laohakunjit, N., Kerdchoechuen, O., Yang, L., & Maier, C. S. (2018). Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Process Biochemistry, 70, 179-187. https://doi.org/10.1016/j.procbio.2018.03.024

Shazly, A. B., He, Z., El-Aziz, M. A., Zeng, M., Zhang, S., Qin, F., & Chen, J. (2017). Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chemistry, 232, 753-762. https://doi.org/10.1016/j.foodchem.2017.04.071

Tang, Y, & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767. https://doi.org/10.1002/mnfr.201600767

Tapia, C., I. L., Taco, D. R., & Taco, T., V. J. (2017). Aislamiento de proteínas de quinua ecuatoriana (Chenopodium quinoa Willd) variedad INIAP Tunkahuan con remoción de compuestos fenólicos, para uso potencial en la nutrición y salud humanas. Revista Facultad de Ciencias Médicas, 41(1), 71-80.

Tavano, O., De Miguel, Amist´J., Giani Del Ciello, Martini Rodrigues, M., Bono Nishida, A., Alves Valadares, L., Moreira Siqueira, B., Da Silva Gomes, R., Parolini, M., & Da Silva Junior, S. (2022). Isolation and evaluation of quinoa (Chenopodium quinoa Willd.) protein fractions. A nutritional and bio-functional approach to the globulin fraction. Current Research in Food Science, 5, 1028-1037. https://doi.org/10.1016/j.crfs.2022.06.006

Temel, S., & Yolcu, S. (2020). The effect of different sowing time and harvesting stages on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops, 25(1), 41-49. https://doi.org/10.17557/tjfc.737503

Toapanta, M. (2016). Caracterización de aislados proteicos de quinua (Chenopodium quinoa Willd.) y su digestibilidad gástrica y duodenal (in vitro). Universidad Técnica de Ambato.

Toderich, K. N., Mamadrahimov, A. A., Khaitov, B. B., Karimov, A. A., Soliev, A. A., Nanduri, K. R., & Shuyskaya, E. V. (2020). Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids, and squalene composition of new quinoa genotype, grown in hyper-arid desert environments. Frontiers in Plant Science, 11, 607102. https://doi.org/10.3389/fpls.2020.607102

Valdivia-Cea, W., Bustamante, L., Jara, J., Fischer, S., Holzapfel, E., & Wilckens, R. (2021). Effect of soil water availability on physiological parameters, yield, and seed quality in four quinoa genotypes (Chenopodium quinoa Willd.). Agronomy, 11(5), 1012. https://doi.org/10.3390/agronomy11051012

Valencia-Chamorro, S. A. (2016). Quinoa: Overview. In C. Wrigley, H. Corke & K. Seetharaman (Eds.), Encyclopedia of Food Grains (Vol. 1, pp. 341-348). Academic Press. https://doi.org/10.1016/B978-0-12-394437-5.00041-3

Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion, Journal of Functional Foods, 35, 531-539. https://doi.org/10.1016/j.jff.2017.06.024

Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403-411. https://doi.org/10.1016/j.foodres.2017.11.036

Wan, X., Liu, H., Sun, Y., Zhang, J., Chen, X., & Chen, N. (2017). Lunasin: A promising polypeptide for the prevention and treatment of cancer. Oncology Letters, 13(6), 3997-4001. https://doi.org/10.3892/ol.2017.6017

Wang, N., Wang, F., Shock, C. C., Meng, C., & Qiao, L. (2020). Effects of management practices on quinoa growth, seed yield, and quality. Agronomy, 10(3), 445. https://doi.org/10.3390/agronomy10030445

Wu, G., Peterson, A. J., Morris, C. F., & Murphy, K. M. (2016). Quinoa seed quality response to sodium chloride and sodium sulfate salinity. Frontiers in Plant Science, 7, 790. https://doi.org/10.3389/fpls.2016.00790

Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Tian, H., Shi, P., & Li, G. (2019). Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an in silico approach: characterization, in vivo antihypertension, and molecular docking. Molecules, 24(24), 4562. https://doi.org/10.3390/molecules24244562

Downloads

Publicado

2025-04-14

Como Citar

ANAYA-GONZÁLEZ, B., FERNANDEZ, E. D. L. C., ALARCÓN, R. C., AYCACHI, R. A. M., ZEGARRA, A. A. U., & BAZILE, D. (2025). Quinoa-derived biopeptides with antioxidant activity and their applications in the pharmaceutical and food industries. Food Science and Technology, 45. https://doi.org/10.5327/fst.00444

Edição

Seção

Artigos de Revisão