Sheep cooked hams with the inclusion of gellan gum as a substitute for carrageenan

Autores

DOI:

https://doi.org/10.5327/fst.00442

Palavras-chave:

hydrocolloids, meat products, development of new products

Resumo

This study aimed to develop and characterize Pantanal sheep cooked hams using gellan gum. Hams were prepared with gellan gum (0.0, 0.3, and 0.5%) as a substitute for carrageenan. In terms of centesimal composition, the moisture, protein, and ash contents were not affected by gellan gum, but cooked hams with 0.5% inclusion had lower lipid, carbohydrate, and caloric value contents. The parameters of water activity, pH, yellow intensity, hue, shear force, gumminess, and resilience were not different among the cooked hams. However, the water holding capacity was lower in cooked hams with 0.3% gellan gum, leading to greater luminosity, lower red intensity and saturation, and lower hardness compared to the others. Elasticity was higher in the cooked hams with 0.5% gellan gum, which also showed greater chewiness. The different cooked hams were suitable for consumption due to the microbiological results and the same sensory acceptance, with medians of 7 (moderately liked) for color, taste, texture, and overall acceptance. It can be concluded that the inclusion of 0.5% gellan gum reduces the lipid content and calorific value of cooked hams, increasing the elasticity and chewiness of the product, without affecting its sensory profile.

Downloads

Não há dados estatísticos.

Referências

Akesowan, A. (2011). Effect of konjac/gellan blend and fat content on physical and textural properties of low-fat pork burgers: a response surface analysis. Australian Journal of Basic and Applied Sciences, 5(3), 219–228. https://ajbasweb.com/old/ajbas/2011/219-228.pdf

Agência Nacional de Vigilância Sanitária. (2022). Instrução Normativa nº 161, de 1 de Julho de 2022. Estabelece os padrões microbiológicos dos alimentos. Diário Oficial da União.

Association of Official Analytical Chemists. (2016). Official Methods of Analysis (20th ed.). AOAC International.

Association of Official Analytical Chemists. (2019). Official Methods of Analysis (21st ed.). AOAC International.

Atwater, W. O. & Woods, C. D. (1896). The Chemical Composition of American Food Materials. U. S. Department of Agriculture, Office of Experiment Stations. Bulletin No. 28.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099

Brasil (2022). Ministério da Agricultura, Pecuária e Abastecimento. Portaria SDA/MAPA n° 701, de 17 de novembro de 2022. Aprova o Regulamento Técnico de Identidade e Qualidade do apresuntado. Ministério da Agricultura, Pecuária e Abastecimento.

Cansian, K., Longo, M. L., Silva, A. L. A., Souza, M. R., Costa, C. M., Silva, E. V. C, Santos, A. R. D. & Vargas Junior, F. M. (2024). Exploratory study of the maternal-filial relationship among sheep: factors that impact the performance of lambs in a locally adapted Pantaneiro flock. Acta Agriculturae Scandinavica, Section A – Animal Science, 73(3–4), 165–171. https://doi.org/10.1080/09064702.2024.2317721

Costa, J. N., Nascimento, L. G. L., Leal, A. R., Mata, P., Alves, C. A. N., Araújo Filho, A. A. L., & Sousa, P. H. M. (2020). Effect of hydroocolloid concentration on bioactive compounds, bioaccessibility and instrumental texture of guava (Psidium guajava L.). Research, Society and Development, 9(5), Article e95953246. https://doi.org/10.33448/rsd-v9i5.3246

Danielski, G. M., Imazaki, P. H., Cavalari, C. M. A., Daube, G., Clinquart, A., & Macedo, R. E. F. (2020). Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science, 162, 108035. https://doi.org/10.1016/j.meatsci.2019.108035

Dutcosky, S. D. (2011). Sensory Analysis of Food. (3rd ed.). Champagnat.

Eghbaljoo, H., Sani, I. K., Sani, M. A., Rahati, S., Mansouri, E., Molaee-Aghaee, E., Fatourehchi, N., Kadi, A., Arab, A., Sarabandi K., Samborska, K., & Jafari, S. M. (2022). Advances in plant gum polysaccharides; Sources, techno-functional properties, and applications in the food industry - A review. International Journal of Biological Macromolecules, 222, 2327–2340. https://doi.org/10.1016/j.ijbiomac.2022.10.020

Fang, F., Luo, X., BeMiller, J. N., Schaffter, S., Hayes, A. M. R., Woodbury, T. J., Hamaker, B. R. & Campanella, O. H. (2020). Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. Food Hydrocolloids, 107, 105923. https://doi.org/10.1016/j.foodhyd.2020.105923

Gao, X., Pourramezan, H., Ramezan, Y., Roy, S., Zhang, W., Assadpour, E., Zou, J., & Jafari, S. M. (2024). Application of gums as techno-functional hydrocolloids in meat processing and preservation: A review. International Journal of Biological Macromolecules, 268, 131614. https://doi.org/10.1016/j.ijbiomac.2024.131614

García-García, E., & Totosaus, A. (2008). Low-fat sodium-reduced sausages: Effect of the interaction between locust bean gum, potato starch and κ-carrageenan by a mixture design approach. Meat Science, 78(4), 406–413. https://doi.org/10.1016/j.meatsci.2007.07.003

Hotchkiss, S., Brooks, M., Campbell, R., Philp, K., & Trius, A. (2016). The Use of Carrageenan in Food. In L. Pereira (Ed.), Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects (pp. 229–243). Nova Science Publishers.

Instituto Adolfo Lutz. (2008). Chemical and physical methods for food analysis (1st digital edition). Instituto Adolfo Lutz. http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial_2008.pdf

Instituto Brasileiro de Geografia e Estatística. (2023). Sheep flock (ewes and rams). https://www.ibge.gov.br/explica/producao-agropecuaria/ovino/br.

Kim, T.-K., Shim, J.-Y., Hwang, K.-E., Kim, Y.-B., Sung, J.-M., Paik, H.-D., & Choi, Y.-S. (2018). Effect of hydrocolloids on the quality of restructured hams with duck skin. Poultry Science, 97(12), 4442–4449. https://doi.org/10.3382/ps/pey309

Li, K., Liu, J.-Y., Fu, L., Li, W.-J., Zhao, Y.-Y., Bai, Y.-H., & Kang, Z.-L. (2019). Effect of gellan gum on functional properties of low-fat chicken meat batters. Journal of Texture Studies, 50(2), 131–138. https://doi.org/10.1111/jtxs.12379

MacFie, H. J., Bratchell, N., Greenhoff, K., & Vallis, L. V. (1989). Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. Journal of Sensory Studies, 4(2), 129–148. https://doi.org/10.1111/j.1745-459X.1989.tb00463.x

Majzoobi, M., Talebanfar, S., Eskandari, M. H., & Farahnaky, A. (2017). Improving the quality of meat-free sausages using κ-carrageenan, konjac mannan and xanthan gum. International Journal of Food Science & Technology, 52(5), 1269–1275. https://doi.org/10.1111/ijfs.13394

Martuscelli, M., Lupieri, L., Sacchetti, G., Mastrocola, D., & Pittia, P. (2017). Prediction of the salt content from water activity analysis in dry-cured ham. Journal of Food Engineering, 200, 29–39. https://doi.org/10.1016/j.jfoodeng.2016.12.017

McArdle, R., & Hamill, R. (2011). Utilization of hydrocolloids in processed meat systems. In J. P. Kerry, & J. F. Kerry (Eds.), Processed Meats: Improving Safety, Nutrition and Quality (pp. 243–269). Woodhead Publishing. https://doi.org/10.1533/9780857092946.2.243

Molina, R. E., Bohrer, B. M., & Mejia, S. M. V. (2023). Phosphate alternatives for meat processing and challenges for the industry: A critical review. Food Research International, 166, 112624. https://doi.org/10.1016/j.foodres.2023.112624

Monteschio, J. O., Burin, P. C., Leonardo, A. P., Fausto, D. A., Silva, A. L. A., Ricardo, H. A., Silva, M. C., Souza, M. R., & Vargas Junior, F. M. (2018). Different physiological stages and breeding systems related to the variability of meat quality of indigenous Pantaneiro sheep. PLOS One, 13(2), Article e0191668. https://doi.org/10.1371/journal.pone.0191668

Pematilleke, N., Kaur, M., Wai, C. T. R., Adhikari, B., & Torley, P. J. (2021). Effect of the addition of hydrocolloids on beef texture: Targeted to the needs of people with dysphagia. Food Hydrocolloids, 113, 106413. https://doi.org/10.1016/j.foodhyd.2020.106413

Pematilleke, N., Kaur, M., Adhikari, B., & Torley, P. J. (2022). Relationship between instrumental and sensory texture profile of beef semitendinosus muscles with different textures. Journal of Texture Studies, 53(2), 232–241. https://doi.org/10.1111/jtxs.12623

Peng, X., & Yao, Y. (2017). Carbohydrates as fat replacers. Annual Review of Food Science and Technology, 8(1), 331–351. https://doi.org/10.1146/annurev-food-030216-030034

Prabhu, G. A., & Sebranek, J. G. (1997). Quality characteristics of ham formulated with modified corn starch and kappa-carrageenan. Journal of Food Science, 62(1), 198–202. https://doi.org/10.1111/j.1365-2621.1997.tb04399.x

Rather, S. A., Masoodi, F. A., Akhter, R., Gani, A., Wani, S. M., & Malik, A. H. (2016). Effects of guar gum as fat replacer on some quality parameters of mutton goshtaba, a traditional Indian meat product. Small Ruminant Research, 137, 169–176. https://doi.org/10.1016/j.smallrumres.2016.03.013

Rizo, A., Peña, E., Alarcon-Rojo, A. D., Fiszman, S., & Tarrega, A. (2019). Relating texture perception of cooked ham to the bolus evolution in the mouth. Food Research International, 118, 4–12. https://doi.org/10.1016/j.foodres.2018.02.073

Sarteshnizi, R. A., Hosseini, H., Mousavi Khaneghah, A., & Karimi, N. (2015). A review on application of hydrocolloids in meat and poultry products. International Food Research Journal, 22(3), 872–887.

Sebranek, J. G. (2009). Basic curing ingredients. In R. Tarté (Ed.), Ingredients in Meat Products (pp. 1–23). Springer. https://doi.org/10.1007/978-0-387-71327-4_1

Silva, D. J., & Queiroz, A. C. (2002). Food analysis: Chemical and biological methods. Editora UFV.

Silva, D. R. G., Haddad, G. B. S., Moura, A. P., Souza, P. M., Ramos, A. L. S., Hopkins, D. L., & Ramos, E. M. (2021). Safe cured meat using gamma radiation: Effects on spores of Clostridium sporogenes and technological and sensorial characteristics of low nitrite cooked ham. LWT, 137, 110392. https://doi.org/10.1016/j.lwt.2020.110392

Toldrá, F., Mora, L., & Flores, M. (2010). Cooked Ham. In F. Toldrá (Ed.), Handbook of Meat Processing (pp. 301–312). Blackwell Publishing.

Tong., K., Xiao, G., Cheng, W., Chen, J., & Sun, P. (2018). Large amplitude oscillatory shear behavior and gelation procedure of high and low acyl gellan gum in aqueous solution. Carbohydrate Polymers, 199, 397–405. https://doi.org/10.1016/j.carbpol.2018.07.043

Warner, R. D. (2023). The eating quality of meat: IV–Water holding capacity and juiciness. In F. Toldrá (Ed.), Lawrie's Meat Science (pp. 457–508). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85408-5.00008-X

Wu, Y., Xu, F., Kong, L., Li, X., Wei, L., & Xu, B. (2024). The pigment transformation from nitrosylheme to Zn-protoporphyrin IX in cooked ham products. Food Bioscience, 58, 103558. https://doi.org/10.1016/j.fbio.2023.103558

Yim, D.-G., Hong, D.-I., & Chung, K.-Y. (2016). Quality characteristics of dry-cured ham made from two different three-way crossbred pigs. Asian-Australasian Journal of Animal Sciences, 29(2), 257–262. https://doi.org/10.5713/ajas.15.0189

You, S., Yang, S., Li, L., Zheng, B., Zhang, Y., & Zeng, H. (2022). Processing technology and quality change during storage of fish sausages with textured soy protein. Foods, 11(22), 3546. https://doi.org/10.3390/foods11223546

Zhou, W. W., Meng, L., Li, X., Ma, L., & Dai, R. (2010). Effect of the interaction between carrageenan, gellan gum and flaxseed gum on quality attributes of starch-free emulsion-type sausage. Journal of Muscle Foods, 21(2), 255–267. https://doi.org/10.1111/j.1745-4573.2009.00180.x

Zhuang, X., Jiang, X., Han, M., Kang, Z.-L., Zhao, L., Xu, X.-L., & Zhou, G.-H. (2016). Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels. Food Hydrocolloids, 57, 253–261. https://doi.org/10.1016/j.foodhyd.2016.01.029

Zia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A., & Zubera, M. (2018). Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 109, 1068–1087. https://doi.org/10.1016/j.ijbiomac.2017.11.099

Downloads

Publicado

2025-05-26

Como Citar

SILVA, G. P., ALTEMIO, Ângela D. C., SILVA, M. I. da, VARGAS JUNIOR, F. M. de, & GOES, E. S. dos R. (2025). Sheep cooked hams with the inclusion of gellan gum as a substitute for carrageenan. Food Science and Technology, 45. https://doi.org/10.5327/fst.00442

Edição

Seção

Artigos Originais