A novel chemometric approach for classifying whole fruit juices, reconstituted juices, and nectars

Autores

DOI:

https://doi.org/10.5327/fst.00432

Palavras-chave:

whole juice, nectar, reconstituted juice, chemical markers, machine learning, classification

Resumo

Fruit juices are widely enjoyed beverages, valued for their organoleptic qualities, chemical composition, and nutritional benefits. They are commonly sold as whole juices (WJs), reconstituted juices, or nectars, with WJs particularly favored by consumers seeking healthier, more balanced dietary options, often commanding a higher market value. However, these desirable characteristics make them vulnerable to fraud and adulteration. To address this issue, a novel strategy has been proposed to classify juices into two categories: WJs and nectar/reconstituted juices (NERJs). This approach combines key chemical markers––such as reducing sugars (RS), sodium (Na), and potassium (K)––with advanced chemometric techniques, including unsupervised methods like principal component analysis (PCA) and supervised methods, such as machine learning algorithms (random forest [RF] and extreme gradient boosting (XGBoost)). The models developed demonstrated remarkable accuracy, achieving 100% classification accuracy for WJs and good performance for NERJs, with accuracy rates > 91.7%. This fast, accurate, and easily implementable strategy is vital for the quality control and authentication of fruit juices by regulatory bodies. It provides essential tools for detecting fraud and adulteration in the beverage industry, ultimately helping ensure the quality and consistency of products available to consumers.

Downloads

Não há dados estatísticos.

Referências

Armstrong, C. E., Gilmore, A. M., Boss, P. K., Pagay, V., & Jeffery, D. W. (2023). Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra. Food Chemistry, 403, 134321. https://doi.org/10.1016/j.foodchem.2022.134321

Association of Official Analysis Chemists International (AOAC) (1964). AOAC Official Method 963.13, Potassium and Sodium in Wines. Association of Official Analysis Chemists International.

Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44. https://doi.org/10.1016/j.chemolab.2017.12.004

Banti, M. (2020). Food adulteration and some methods of detection, Review. International Journal of Nutrition and Food Sciences, 9(3), 86-94. https://doi.org/10.11648/j.ijnfs.20200903.13.

Borges, E. M., Volmer, D. A., Brandelero, E., Gelinski, J. M. L. N., Gallimberti, M., & Barbosa Jr., F. (2015). Monitoring the authenticity of organic grape juice via chemometric analysis of elemental data. Food Analytical Methods, 9, 362-369. https://doi.org/10.1007/s12161-015-0191-x

Brasil (2009). Ministério de Estado da Agricultura, Pecuária e Abastecimento. Regulamenta a Lei nº 8.918, de 14 de julho de 1994, que dispõe sobre a padronização, a classificação, o registro, a inspeção, a produção e a fiscalização de bebidas (Decreto n. 6.871, de 4 de junho de 2009). Diário Oficial da União. Retrieved from https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/decreto/d6871.htm

Brasil (2013). Ministério de Estado da Agricultura, Pecuária e Abastecimento. (Instrução Normativa nº 42, de 11 de setembro de 2013). Diário Oficial da União. Retrieved from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=12/09/2013&jornal=1&pagina=3&totalArquivos=128

Brasil (2014). Ministério de Estado da Agricultura, Pecuária e Abastecimento. Regulamenta a Lei nº 7.678, de 8 de novembro de 1988, que dispõe sobre a produção, circulação e comercialização do vinho e derivados da uva e do vinho (Decreto n. 8.198, de 20 de fevereiro de 2014). Diário Oficial da União. Retrieved from https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2014/decreto/d8198.htm

Brasil (2018). Ministério de Estado da Agricultura, Pecuária e Abastecimento. (Instrução Normativa nº 14, de 08 de fevereiro de 2018). Diário Oficial da União. Retrieved from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=09/03/2018&jornal=515&pagina=4

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324

Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazán, K., & Avila-George, H. (2019). Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces. IEEE Access, 7, 27389-27400. https://doi.org/10.1109/ACCESS.2019.2898223

Codex Alimentarius (2005). STAN 247-2005: Codex General Standard for fruit juices and nectars. Food and Agriculture Organization.

Cristea, G., Dehelean, A., Voica, C., Feher,I., Puscas, R., & Magdas, D. A. (2020). Isotopic and elemental analysis of apple and orange juice by Isotope Ratio Mass Spectrometry (IRMS) and Inductively Coupled Plasma–Mass Spectrometry (ICP-MS). Analytical Letters, 54(1-2), 212-226. https://doi.org/10.1080/00032719.2020.1743717

Dasenaki, M. E., & Thomaidis, N. S. (2019). Quality and authenticity control of fruit juices-a review. Molecules, 24(6), 1014. https://doi.org/10.3390/molecules24061014.

Google Colaboratory (2023). Python Software Foundation. Google Colaboratory.

Gutiérrez-Capitán, M., Santiago, J. L., Vila-Planas, J., Llobera, A., Boso, S., Gago, P., Martínez, M. C., & Jiménez-Jorquera, C. (2013). Classification and characterization of different white grape juices by using a hybrid electronic tongue. Journal of Agricultural and Food Chemistry, 61(39), 9325-9332. https://doi.org/10.1021/jf402960q

Instituto Adolfo Lutz (IAL) (2008). Métodos físico-químicos para análise de alimentos (4a ed.). IAL.

International Organisation of Vine and Wine (OIV) (2022). Compendium of International Methods of Wine and Must Analysis (2 Vol.). OIV.

Junges, C. H., Guerra, C. C., Gomes, A. A., & Ferrão, M. F. (2024). Multiblock data applied in organic grape juice authentication by one-class classification OC-PLS. Food Chemistry, 436, 137695. https://doi.org/10.1016/j.foodchem.2023.137695

Kersh, D. M. E., Hammad, G., Donia, M. S., & Farag, M. A. (2023). A comprehensive review on grape juice beverage in context to its processing and composition with future perspectives to maximize its value. Food and Bioprocess Technology, 16(1), 1-23. https://doi.org/10.1007/s11947-022-02858-5

Lan, T., Wang, J., Bao, S., Zhao, Q., Sun, X., Fang, Y., Ma, T., & Liu, S. (2023). Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Research International, 168, 112784. https://doi.org/10.1016/j.foodres.2023.112784

Lepaus, B. M., Valiati, B. S., Machado, B. G., Domingos, M. M., Silva, M. N., Faria-Silva, L., Bernardes, P. C., Oliveira, D. S., & de São José, J. F. B. (2023). Impact of ultrasound processing on the nutritional components of fruit and vegetable juices. Trends in Food Science & Technology, 138, 752-765. https://doi.org/10.1016/j.tifs.2023.07.002

Liu, X., Mu, J., Tan, D., Mao, K., Zhang, J., Saqid, F.A., Sang, Y., & Zhang, A. (2022). Application of stable isotopic and mineral elemental fingerprints in identifying the geographical origin of concentrated apple juice in China. Food Chemistry, 391, 133269. https://doi.org/10.1016/j.foodchem.2022.133269

Mac, H. X., Pham, T. T., Ha, N. T. T., Nguyen, L. L. P., Baranyai, L., & Friedrich, L. (2023). Current techniques for fruit juice and wine adulterant detection and authentication. Beverages, 9(4), 84. https://doi.org/10.3390/beverages9040084

Maione, C. de Paula, E. S., Gallimberti, M., Batista, B. L., Campiglia, A. D., Barbosa Jr., F., & Barbosa, R. M. (2016). Comparative study of data mining techniques for the authentication of organic grape juice based on ICP-MS analysis. Expert Systems with Applications, 49, 60-73. https://doi.org/10.1016/j.eswa.2015.11.024

Markowski, J., Baron, A., Mieszczakowska, M., Płocharski, W. (2009). Chemical composition of French and Polish cloudy apple juices. Journal of Horticultural Science and Biotechnology, 84(6), 68-74. https://doi.org/10.1080/14620316.2009.11512598

Moore, J. C., Spink, J., & Lipp, M. (2012). Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of Food Science, 77(4), R118-R126. https://doi.org/10.1111/j.1750-3841.2012.02657.x

Rajauria, G., & Tiwari, B. K. (2018). Fruit juices: Extraction, composition, quality and analysis. Academic Press.

Rinke, P., & Jamin, E. (2018). Fruit juices. In J.-F. Morin & M. Lees (Eds.), Food Integrity Handbook (pp. 243-264). Eurofins Analytics.

Rizzon, L. A., & Miele, A. (2012). Analytical characteristics and discrimination of Brazilian commercial grape juice, nectar, and beverage. Food Science and Technology, 32, 93-97. https://doi.org/10.1590/S0101-20612012005000015

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002

Team R Core (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Wen, J., Li, J., Wang, D., Li, C., Robbat, A., & Xia, L. (2023). Identification of geographical origin of winter jujube based on GC–MS coupled with machine-learning algorithms. Journal of Food Composition and Analysis, 124, 105710. https://doi.org/10.1016/j.jfca.2023.105710

Włodarska, K., Pawlak-Lemanska, K., Gorecki, T., & Sikorska, E. (2016). Perception of apple juice: a comparison of physicochemical measurements, descriptive analysis and consumer responses. Journal of Food Quality, 39(4), 351-361. https://doi.org/10.1111/jfq.12208

Włodarska, K., Pawlak-Lemanska, K., Gorecki, T., & Sikorska, E. (2017). Classification of commercial apple juices based on multivariate analysis of their chemical profiles. International Journal of Food Properties, 20(8), 1773-1785. https://doi.org/10.1080/10942912.2016.1219367

Wójcik, S., & Jakubowska, M. (2021). Deep neural networks in profiling of apple juice adulteration based on voltammetric signal of the iridium quadruple-disk electrode. Chemometrics and Intelligent Laboratory Systems, 209, 104246. https://doi.org/10.1016/j.chemolab.2021.104246

You, J., Hao, G., Gan, X., Chen, R., Chen, Y., Zhang, Z., Sun, A., Liu, H., & Shi, X. (2024). Extreme gradient boosting-enhanced molecularly imprinted fluorescence nanosensor for rapid identification and visual detection of deltamethrin in seawater and aquatic products. Sensors and Actuators B: Chemical, 405, 135355. https://doi.org/10.1016/j.snb.2024.135355

Downloads

Publicado

2025-03-05

Como Citar

KACZALA, S., LIMA, V. A. de, & FELSNER, M. L. (2025). A novel chemometric approach for classifying whole fruit juices, reconstituted juices, and nectars. Food Science and Technology, 45. https://doi.org/10.5327/fst.00432

Edição

Seção

Artigos Originais