Presence of extended-spectrum β-lactamase in Escherichia coli strains isolated from beef, pork, and chicken meats sold in Recife, Brazil
DOI:
https://doi.org/10.5327/fst.00425Palavras-chave:
antimicrobial resistance, food safety, esbl, meat contamination, epidemiological surveillanceResumo
This study aimed to identify extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in chicken, beef, and pork meats sold in Recife, Pernambuco, Brazil. A total of 120 meat samples (40 of each type) were collected from supermarkets, butcher shops, and open-air markets across the city’s eight health districts, using convenience sampling. The samples were processed in a microbiology laboratory, and E. coli was identified through selective isolation on eosin-methylene blue agar and biochemical tests. Phenotypic resistance was assessed using disk diffusion tests on Müller–Hinton agar with cefotaxime, ceftazidime, and ceftriaxone disks, followed by the double-disk synergy test to confirm ESBL production. Genotypic analysis was conducted by polymerase chain reaction to detect the blaTEM and blaSHV genes. Of the 40 E. coli isolates obtained, 34 (85%) exhibited phenotypic resistance, while 21 (52.5%) and 23 (57.5%) tested positive for the blaSHV and blaTEM genes, respectively. A higher prevalence of blaSHV was observed in pork samples (73.3%, 11/15), whereas blaTEM was more prevalent in beef (70%, 7/10). The presence of resistant bacteria in commercial meats highlights contamination risks in the production chain and underscores the need for surveillance and public awareness to protect human health.
Downloads
Referências
Berbers, B., Vanneste, K., Roosens, N. H. C. J., Marchal, K., Ceyssens, P. J., & De Keersmaecker, S. C. J. (2023). Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium. Microbial Genomics, 9(1), mgen.0.000925. https://doi.org/10.1099/mgen.0.000925
Brasil (2018). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 60, de 20 de dezembro de 2018. Estabelece o controle microbiológico em carcaça de suínos e em carcaça e carne de bovinos em abatedouros frigoríficos, registrados no Departamento de Inspeção de Produtos de Origem Animal (DIPOA), com objetivo de avaliar a higiene do processo e reduzir a prevalência de agentes patogênicos. Ministério da Agricultura, Pecuária e Abastecimento.
Brasil (2022). Ministério da Agricultura, Pecuária e Abastecimento. Métodos Oficiais para Análise de Produtos de Origem Animal. Ministério da Agricultura, Pecuária e Abastecimento.
Cantón, R., González-Alba, J. M., & Galán, J. C. (2012). CTX-M enzymes: origin and diffusion. Frontiers in Microbiology, 3, 110. https://doi.org/10.3389/fmicb.2012.00110
Carvalho, A. F., Miyashiro, S., Nassar, A. F. C., Noda, A., Gabriel, D. T., & Baldassi, L. (2012). Caracterização molecular e fenotípica de estirpes de escherichia coli produtoras de shiga-toxina (STEC) não-O157 de fezes e carcaças bovinas. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(4), 881-886. https://doi.org/10.1590/S0102-09352012000400014
Crespo-Piazuelo, D., & Lawlor, P. G. (2021). Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Irish Veterinary Journal, 74, 21. https://doi.org/10.1186/s13620-021-00200-7
Dahms, C., Hübner, N.O., Kossow, A., Mellmann, A., Dittmann, K., & Kramer, A. (2015). Occurrence of ESBL-producing escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. Public Library of Science One, 10(11), e0143326. https://doi.org/10.1371/journal.pone.0143326
European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2017). Guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST. Retrieved from https://aurosan.de/images/mediathek/servicematerial/EUCAST_detection_of_resistance_mechanisms.pdf
Faúla, L. L. (2016). Fatores de virulência, sorotipos e susceptibilidade antimicrobiana de amostras de Escherichia coli isoladas de alimentos no estado de Minas Gerais, Brasil. (Dissertação de Mestrado, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Minas Gerais). Retrieved from https://repositorio.ufmg.br/bitstream/1843/SMOC-AA8NER/1/leandro_le_o_fa_la.pdf
Hawkey, P. M., & Jones, A. M. (2009). The changing epidemiology of resistance. The Journal of Antimicrobial Chemotherapy, 64(Suppl. 1), i3-10. https://doi.org/10.1093/jac/dkp256
Húngaro, H. M., Caturla, M. Y. R., Horita, C. N., Furtado, M. M., & Sant’Ana, A. S. (2016). Blown pack spoilage in vacuum-packaged meat: A review on clostridia as causative agents, sources, detection methods, contributing factors and mitigation strategies. Trends in Food Science & Technology, 52, 123-138. https://doi.org/10.1016/j.tifs.2016.04.010
Jang, J., Hur, H.G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: Ecology and public health implications – a review. Journal of Applied Microbiology, 123(3), 570-581. https://doi.org/10.1111/jam.13468
Jia, P., Zhu, Y., Li, X., Kudinha, T., Yang, Y., Zhang, G., Zhang, J., Xu, Y., & Yang, Q. (2021). high prevalence of extended-spectrum beta-lactamases in escherichia coli strains collected from strictly defined community-acquired urinary tract infections in adults in China: a multicenter prospective clinical microbiological and molecular study. Frontiers in Microbiology, 12, 663033. https://doi.org/10.3389/fmicb.2021.663033
Koneman, E. W., Procop, G. W., Church, D. L., Hall, G. S., Janda, W. M., Schreckenberger, P. C., & Woods, G. L. (2018). Diagnóstico microbiológico: texto e atlas colorido (7ª ed.). Grupo GEN.
Kyselková, M., Jirout, J., Vrchotová, N., Schmitt, H., & Elhottová, D. (2015). Spread of tetracycline resistance genes at a conventional dairy farm. Frontiers in Microbiology, 6, 536. https://doi.org/10.3389/fmicb.2015.00536
Larramendy, S., Gaultier, A., Fournier, J. P., Caillon, J., Moret, L., & Beaudeau, F. (2021). Local characteristics associated with higher prevalence of ESBL-producing escherichia coli in community-acquired urinary tract infections: an observational, cross-sectional study. Journal of Antimicrobial Chemotherapy, 76(3), 789-795. https://doi.org/10.1093/jac/dkaa514
Lee, S. H. I., Camargo, C. H., Gonçalves, J. L., Cruz, A. G., Sartori, B. T., Machado, M. B., & Oliveira, C. A. F. (2012). Characterization of Staphylococcus aureus isolates in milk and the milking environment from small-scale dairy farms of São Paulo, Brazil, using pulsed-field gel electrophoresis. Journal of Dairy Science, 95(12), 7377-7383. https://doi.org/10.3168/jds.2012-5733
Lentz, S. A. M. (2022). Caracterização de genes de resistência de isolados de E. coli provenientes de suínos, avaliação dos diferentes perfis clonais circulantes e sua relação com resíduos de antibióticos no ambiente e na carne in natura (Tese de Doutorado, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul). Retrieved from https://lume.ufrgs.br/handle/10183/247115
Li, X. Z., Mehrotra, M., Ghimire, S., & Adewoye, L. (2007). β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology, 121(3-4), 197-214. https://doi.org/10.1016/j.vetmic.2007.01.015
Lim, J. Y., Yoon, J., & Hovde, C. J. (2010). A Brief overview of escherichia coli O157:H7 and its plasmid O157. Journal of Microbiology and Biotechnology, 20(1), 5-14.
Luz, L. E., Evêncio-Neto, J., Mendonça, F. S., & Sousa, I. N. (2017). Perfil microbiológico da carne bovina in natura comercializada no município de Picos, Piauí. Higiene Alimentar, 31(270-271), 124-129.
Mostafa, H. H., Cameron, A., Taffner, S. M., Wang, J., Malek, A., Dumyati, G., Hardy, D. J., & Pecora, N. D. (2020). Genomic surveillance of ceftriaxone-resistant escherichia coli in western New York suggests the extended-spectrum β-lactamase bla ctx-m-27 is emerging on distinct plasmids in st38. Frontiers in Microbiology, 11, 1747. https://doi.org/10.3389/fmicb.2020.01747
Mota, R. A., Silva, K. P. C., Freitas, M. F. L., Porto, W. J. N., & Silva, L. B. G. (2005). Utilização indiscriminada de antimicrobianos e sua contribuição a multirresitência bacteriana. Brazilian Journal of Veterinary Research and Animal Science, 42(6), 465-470. https://doi.org/10.11606/issn.1678-4456.bjvras.2005.26406
Richelsen, R., Smit, J., Schønheyder, H. C., Anru, P. L., Gutiérrez-Gutiérrez, B., Rodríguez-Bãno, J., & Nielsen, H. (2020). Outcome of community-onset ESBL-producing escherichia coli and klebsiella pneumoniae bacteraemia and urinary tract infection: a population-based cohort study in Denmark. Journal of Antimicrobial Chemotherapy, 75(12), 3656-3664. https://doi.org/10.1093/jac/dkaa361
Sampaio, I. B. M. (1998). Estatística aplicada à experimentação animal. Fundação de Ensino e Pesquisa em Medicina Veterinária e Zootecnia.
Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S., Ray, P., Puniya, A. K., & Panwar, H. (2018). Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science, 4, 237. https://doi.org/10.3389/fvets.2017.00237
Silva, I. M. M., Evêncio-Neto, J., Silva, R. M., Lucena-Silva, N., Magalhães, J., & Baliza, M. (2011). Caracterização genotípica dos isolados de Escherichia coli provenientes de frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(2), 333-339. https://doi.org/10.1590/S0102-09352011000200010
Van Hoek, A. H. A, Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired Antibiotic Resistance Genes: an Overview. Frontiers in Microbiology, 2, Article 203, 1–27. https://doi.org/10.3389/fmicb.2011.00203
Woerther, P. L., Burdet, C., Chachaty, E., & Andremont, A. (2013). Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clinical Microbiology Reviews, 26(4), 744-758. https://doi.org/10.1128/CMR.00023-13
World Health Organization (WHO) (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO. Retrieved from https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
World Health Organization (WHO) (2022). Global antimicrobial resistance and use surveillance system (GLASS) report 2022. WHO.