Investigation of the internal quality of ‘Palmer’ and ‘Tommy Atkins’ mangoes by near-infrared spectroscopy

Autores

DOI:

https://doi.org/10.5327/fst.00417

Palavras-chave:

Mangifera indica L, soluble solids, titratable acidity, dry matter, short-wave near-infrared region, near-infrared spectroscopy

Resumo

This study focuses on optimizing mango harvesting and minimizing waste by using a handheld near-infrared (NIR) spectrophotometer to develop predictive models for assessing the quality of ‘Palmer’ and ‘Tommy Atkins’ mangoes. It aims to enhance mechanical resistance and reduce post-harvest losses. The study created prediction models for key quality attributes: soluble solids (SS), titratable acidity (TA), and dry matter (DM). For ‘Palmer’ mangoes, the first derivative of Savitzky–Golay (SG1) yielded the best SS predictions (the coefficient of determination for prediction [P] = 0.69, the square root of the mean error of prediction [RMSEP] = 1.56%, and the standard deviation ratio of prediction [SDRP] = 1.80). For ‘Tommy Atkins’ mangoes, the second derivative of Savitzky–Golay (SG2) was more effective (P = 0.72, RMSEP = 2.43%, and SDRP = 1.85). TA prediction models showed that SG2 was more effective for ‘Palmer’ (P = 0.56, RMSEP = 0.14%, and SDRP = 1.48), while multiplicative signal correction pre-treatment worked better for ‘Tommy Atkins’ (P = 0.59, RMSEP = 0.13%, and SDRP = 1.55). For DM predictions, SG1 was optimal for ‘Palmer’ (P = 0.83, RMSEP = 0.95, and SDRP = 2.44) and SG2 for ‘Tommy Atkins’ (P = 0.79, RMSEP = 1.36, and SDRP = 2.00). In conclusion, the handheld NIR spectrophotometer shows promise for accurate quality assessments in the mango production chain, enabling better decision-making on harvest timing and reducing post-harvest losses.

Downloads

Não há dados estatísticos.

Referências

Anderson, N. T., Walsh, K. B., Subedi, P. P., & Hayes, C. H. (2020). Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. Postharvest Biology and Technology, 168, 111202. https://doi.org/10.1016/j.postharvbio.2020.111202

Association of Official Analytical Chemists (AOAC) (1997). Official methods of analysis of the Association of Official Analytical Chemists International. 16th ed. AOAC.

Brito, A. A., Campos, F., Nascimento, A. R., Damiani, C., Silva, F. A., Teixeira, G. H. A., & Cunha Junior, L. C. (2022). Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable Vis-NIR spectrometer. Journal of Food Composition and Analysis, 107, 104288. https://doi.org/10.1016/j.jfca.2021.104288

Fan, S., Wang, Q., Tian, X., Yang, G., Xia, Y., Li, J., & Huang, W. (2020). Non-destructive evaluation of soluble solids content of apples using a developed portable VIS/NIR device. Biosystems Engineering, 193, 138-148. https://doi.org/10.1016/j.biosystemseng.2020.02.017

Freitas, S. T., Guimarães, I. T., Vilvert, J. C., Amaral, M. H. P., Brecht, J. K., & Marques, A. T. B. (2022). Mango dry matter content at harvest to achieve high consumer quality of different cultivars in different growing seasons. Postharvest Biology and Technology, 189, 111917. https://doi.org/10.1016/j.postharvbio.2022.111917

Gianguzzi, G., Farina, V., Inglese, P. & Rodrigo, M. G. L. (2021). Effect of harvest date on mango (Mangifera indica L. cultivar Osteen) fruit’s qualitative development, shelf life and consumer acceptance. Agronomy, 11(4), 811. https://doi.org/10.3390/agronomy11040811

Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286-291. https://doi.org/10.1016/j.aca.2005.09.014

Lauricella, M., Emanuele, S., Calvaruso, G., Giuliano, M., & D’Anneo, A. (2017). Multifaceted health benefits of Mangifera indica L. (mango): the inestimable value of orchards recently planted in Sicilian rural areas. Nutrients, 9(5), 525. https://doi.org/10.3390/nu9050525

Li, X., Wei, Y., Xu, J., Feng, X., Wu, F., Zhou, R., Jin, J., Xu, K., Yu, X., & He, Y. (2018). SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biology and Technology, 143(4), 112-118. https://doi.org/10.1016/j.postharvbio.2018.05.003

Lobo, M. G., & Sidhu, J. S. (2017). Biology, postharvest physiology, and biochemistry of mango. In M. Siddiq, J. K. Brecht & J. S. Sidhu (Eds.), Handbook of mango fruit: production, postharvest science, processing technology and nutrition (pp. 37-59). John Wiley & Sons.

Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Guerrero Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Front Plant Science, 10, 1073. https://doi.org/10.3389/fpls.2019.01073

Marques, E. J. N., Freitas, S. T., Pimentel, M. F. & Pasquini, C. (2016). Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer. Food Chemistry, 197(Part B), 1207-1214. https://doi.org/10.1016/j.foodchem.2015.11.080

Ministério da Agricultura, Pecuária e Abastecimento (MAPA) (2023). AGROSTAT - Estatísticas de Comércio Exterior de Agronegócio Brasileiro. Retrieved from https://indicadores.agricultura.gov.br/agrostat/index.htm

Mishra, P., & Woltering, E. (2023). Semi-supervised robust models for predicting dry matter in mango fruit with near-infrared spectroscopy. Postharvest Biology and Technology, 202, 112335. https://doi.org/10.1016/j.postharvbio.2023.112335

Munawar, A. A., Zulfahrizal, Meilina, H., & Pawelzik, E. (2022). Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches. Computers and Electronics in Agriculture, 193(2), 106657. https://doi.org/10.1016/j.compag.2021.106657

Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024

Nordey, T., Joas, J., Davrieux, F., Chillet, M., & Léchaudel, M. (2017). Robust NIRS models for non-destructive prediction of mango internal quality. Scientia Horticulturae, 216, 51-57. https://doi.org/10.1016/j.scienta.2016.12.023

Santos Neto, J. P., Assis, M. W. D., Casagrande, I. P., Cunha Junior, L. C., & Teixeira, G. H. A. (2017). Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biology and Technology, 130, 75-80. https://doi.org/10.1016/j.postharvbio.2017.03.009

Schmilovitchs, Z., Mizrach, A., Hoffman, A., Egozi, H., & Fuchs, Y. (2000). Determination of mango physiological indices by near-infrared spectrometry. Postharvest Biology and Technology, 19(3), 245-252. https://doi.org/10.1016/S0925-5214(00)00102-2

Shah, S. S. A., Zeb, A., Qureshi, W. S., Malik, A. U., Tiwama, M., Walsh, K., Amin, M., Alsamary, W., & Alanazi, E. (2021). Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy. Infrared Physics & Technology, 115, 103639. https://doi.org/10.1016/j.infrared.2021.103639

Subedi, P. P., & Walsh, K. B. (2011). Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Biology and Technology, 62(3), 238-245. https://doi.org/10.1016/j.postharvbio.2011.06.014

Subedi, P. P., Walsh, K. B., & Hopkins, S. W. (2012). Assessment of titratable acidity in fruit using short wave near infrared spectroscopy. Part A: Establishing a detection limit based on model solutions. Journal of Near Infrared Spectroscopy, 20(4), 449-457. https://doi.org/10.1255/jnirs.1010

Subedi, P. P., Walsh, K. B., & Owens, G. (2007). Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biology and Technology, 43(3), 326-334. https://doi.org/10.1016/j.postharvbio.2006.09.012

Toscano, G., Rinnan, Å., Pizzi, A., & Mancini, M. (2017). The use of near-infrared (NIR) spectroscopy and principal component analysis (PCA) to discriminate bark and wood of the most common species of the pellet sector. Energy Fuels, 31(3), 2814-2821. https://doi.org/10.1021/acs.energyfuels.6b02421

Yahia, E. M. (2019). Mango (Mangifera indica L.). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits: cocona to mango (pp. 492-565). Woodhead Publishing Limited.

Yu, Y., & Yao, M. (2022). A portable NIR system for nondestructive assessment of SSC and firmness of Nanguo pears. LWT, 167, 113809. https://doi.org/10.1016/j.lwt.2022.113809

Zhang, W., Zhu, G., & Zhu, G. (2022). The imitation and creation of a mango flavor. Food Science and Technology, 42, e34622. https://doi.org/10.1590/fst.34622

Downloads

Publicado

2025-03-17

Como Citar

ANTUNES, T. G., SOUZA, D. S. de, GUARIGLIA, B. A. D., SILVA, D. P. C. da, MORGADO, C. M. A., MATTA, L. M. da, CORRÊA, G. de C., & CUNHA JÚNIOR, L. C. (2025). Investigation of the internal quality of ‘Palmer’ and ‘Tommy Atkins’ mangoes by near-infrared spectroscopy. Food Science and Technology, 45. https://doi.org/10.5327/fst.00417

Edição

Seção

Artigos Originais