Inhibitory effect of coatings with different polymeric bases on germination and in vitro growth of anthracnose fungus
DOI:
https://doi.org/10.5327/fst.00384Palavras-chave:
starch, carboxymethylcellulose, chitosan, C. theobromicolaResumo
Colletotrichum theobromicola is one of the fungus species that causes anthracnose in the papaya fruit. This study aimed to evaluate the effect of three polymeric bases in their usual concentrations – starch (6% m/v), carboxymethylcellulose (CMC, 1% m/v), and chitosan (2% m/v) – on the in vitro growth parameters of C. theobromicola: germination, conidia count, and membrane permeabilization, to identify a more suitable polymeric base to be applied in the development of an active coating for the postharvest conservation of papaya. In vitro growth was determined in Petri dishes for 7 days, while germination and membrane permeabilization were assessed after 24 h of incubation at 25 ± 3ºC. It was found that the different polymeric bases interfere with the germination and mycelial growth of C. theobromicola. The chitosan coating completely inhibited germination and in vitro growth of the fungus. Germination and in vitro growth were more easily achieved with the 6% starch coating. The 1% CMC also showed a high proportion of conidia germination but with a lower proportion of mycelial growth. Thus, based on the high cost of chitosan, CMC can be considered a more suitable polymeric base for the formulation of active coatings.
Downloads
Referências
Ali, A., Pheng, T. W., & Mustafa, M. A. (2015). Application of lemongrass oil in vapour phase for the effective control of anthracnose of ‘Sekaki’ papaya. Journal of Applied Microbiology, 118(6), 1456-1464. https://doi.org/10.1111/jam.12782
Amariz, A., Lima, M. A. C., Trindade, D. C. G., Santos, A. C. N, & Ribeiro, T. P. (2010). Recobrimentos à base de carboximetilcelulose e dextrina em mangas Tommy Atkins. Ciência Rural, 40(10), 2199-2205. https://doi.org/10.1590/S0103-84782010001000024
Botelho, R. V., Maia, A. J., Rickli, E. H., Leite, C. D., & Faria, C. M. D. R. (2010). Quitosana no controle de Penicillium sp. na pós colheita de maçãs. Revista Brasileira de Agroecologia, 5(2), 200-206.
Camili, E. C., Benato, E. A., Pascholati, S. F., & Cia, P. (2007). Evaluation of chitosan on postharvest protection of ‘Itália’ grapes against Botrytis cinerea. Summa Phytopathology, 33(3), 215-221. https://doi.org/10.1590/S0100-54052007000300001
Chaudhary, M. M., Patel, D. S., Chaudhary, D. H., & Dighule, S. B. (2020). Isolation and characterization of fungi associated with deterioration of papaya fruits. Journal of Pharmacognosy and Phytochemistry, 9(4), 3434-3437.
Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: a review. Polymers, 11(12), 2039. https://doi.org/10.3390/polym11122039
Costa, F., Braga, R. C., Bastos, M. S. R., Santos, D. N., & Frota, M. M. (2022). Edible coatings based on cassava starch (manihot esculenta) in vegetable products: a review. Research, Society and Development, 11(4), e54511427428. https://doi.org/10.33448/rsd-v11i4.27428
Debnath, D., Samal, I., Mohapatra, C., Routray, S., Kesawat, M. S., & Labanya, R. (2022). Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. Life, 12(11), 1908. https://doi.org/10.3390/life12111908
Dong, F., & Wang, X. (2017). Effects of carboxymethyl cellulose incorporated with garlic essential oil composite coatings for improving quality of strawberries. International Journal of Biological Macromolecules, 104(Part A), 821-826. https://doi.org/10.1016/j.ijbiomac.2017.06.091
Donini, L. P., Bernardi, E., Minotto, E., & Nascimento, J. S. (2005). In vitro development of Pleurotus spp. under the effect of substrates and dextrose. Arquivos do Instituto Biológico, 72(3), 331-338. https://doi.org/10.1590/1808-1657v72p3312005
Dotto, L. G., Vieira, M. L. G., & Pinto, L. A. A. (2015). Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. Food Science and Technology, 64(1), 126-130. https://doi.org/10.1016/j.lwt.2015.05.042
Eriksson, K.-E., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Springer.
Gonzáles, D. R., Triana, A. C., Coca, B. M., Arrebato, M. A. R., & Pedroso, A. T. R. (2009). Actividad antifúngica in vitro de la quitosana sigma frente a hongos fitopatógenos causantes del manchado del grano en el cultivo de arroz (Oryza sativa L.). Fitossanidad, 13(2), 101-108.
Granja, R. C. B., Neves, F. P. A., Feitoza, G. S., Seixas, J. R. P. C., Siqueira, L. C. S., Lima Neto, C. R. L. A., Silva, M. V., Correia, M. T. S., Souza, M. P., & Cunha, M. G. C. (2021). Evaluation of the effect of chitosan-based coating on the post-harvest conservation of Umbu. Brazilian Journal of Development, 7(10), 95693-95706. https://doi.org/10.34117/bjdv7n10-066
Guerra, I. C. D., Oliveira, P. D. L., Pontes, A. L. S., Lúcio, A. S. S. C., Tavares, J. F., Barbosa-Filho, J. M., Madruga, M. S., & Souza, E. L. (2015). Coatings comprising chitosan and Mentha piperita L. or Mentha x villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. International Journal of Food Microbiology, 214, 168-178. https://doi.org/10.1016/j.ijfoodmicro.2015.08.009
Instituto de Pesquisa Econômica Aplicada (IPEA) (2024). Taxa de câmbio anual. IPEA. Retrieved from http://www.ipeadata.gov.br/ExibeSerie.aspx?stub=1&serid=38590&module=M
Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51-63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
Lee, D. S., & Je, J. Y. (2013). Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. Journal of Agriculture and Food Chemistry, 61(26), 6574-6579. https://doi.org/10.1021/jf401254g
Li, X. F., Feng, X. Q., Yang, S., Fu, G. Q., Wang, T. P., & Su, Z. X. (2010). Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydrate Polymers, 79(3), 493-499. https://doi.org/10.1016/j.carbpol.2009.07.011
Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300-306. https://doi.org/10.1016/j.postharvbio.2006.12.019
Lopez-Moya, F., Colom-Valiente, M. F., Martinez-Peinado, P., Martinez-Lopez, J. E., Puelles, E., Sempere-Ortells, J. M., & Lopez-Llorca, L. V. (2015). Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens. Fungal Biology, 119(2-3), 154-169. https://doi.org/10.1016/j.funbio.2014.12.003
Lucas-Bautista, J. A., Bautista-Baños, S., Ventura-Aguilar, R. I., & Gómez-Ramírez, M. (2019). Determinación de quitina en hongos postcosecha y de quitinasas en frutos de papaya “Maradol”. Revista Mexicana de Fitopatología, 37(1), 1-7.
Maia, A. J., Botelho, R. V., Faria, C. M. D. R., & Leite, C. D. (2010). Chitosan action on Plasmopara viticola and Elsinoe ampelina development in vitro and in grapevines cv. Isabel. Summa Phytopathologica, 36(3), 203-209. https://doi.org/10.1590/S0100-54052010000300003
Muzzarelli, R. A. A. (2011). Chitin nanostructures in living organisms. In Gupta, N. (Ed.), Chitin: Topics in Geobiology (vol. 34). Springer.
Park, S. C., Nah, J. W., & Park, Y. (2011). pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens. Macromolecular Research, 19, 853-860. https://doi.org/10.1007/s13233-011-0812-1
Passos Braga, S., Lundgren, G. A., Macedo, S. A., Tavares, J. F., Santos Vieira, W. A., Câmara, M. P. S., & Souza, E. L. (2019). Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. International Journal of Biological Macromolecules, 139, 631-639. https://doi.org/10.1016/j.ijbiomac.2019.08.010
Pavinatto, A., Almeida Mattos, A. V., Malpass, A. C. G., Okura, M. H., Balogh, D. T., & Sanfelice, R. C. (2020). International Journal of Biological Macromolecules, 151, 1004-1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076
Portes, J. A., Souza, T. G., Santos, T. A. T., Silva, L. L. R., Ribeiro, T. P., Pereira, M. D., & Seabra, S. H. (2015). Reduction of toxoplasma gondii development due to inhibition of parasite antioxidant enzymes by a dinuclear iron (III) compound. Antimicrobial Agents and Chemotherapy, 59(12), 7374-7386. https://doi.org/10.1128/AAC.00057-15
Putzke, J., & Putzke, M. T. L. (1998). Os reinos dos fungos (vol. 1). EDUNISC.
Santos, V. S., Santos, V. S., Fernandes, R. S., Ferreira Júnior, C. R., Aouada, F. A., Américo-Pinheiro, J. H. P., & Moura, M. R. (2021). Evaluation and characterization of edible carboxymethylcellulose biofilm containing chitosan nanoparticles and turmeric. Revista Matéria, 26(1), e12926. https://doi.org/10.1590/S1517-707620210001.1226
Santos Vieira, W. A., Bezerra, P. A., da Silva, A. C., Veloso, J. S., Câmara, M. P. S., & Doyle, V. P. (2020). Optimal markers for the identification of Colletotrichum species. Molecular Phylogenetic and Evolution, 143, 106694. https://doi.org/10.1016/j.ympev.2019.106694
Santos Vieira, W. A., Veloso, J. S., Silva, A. C., Santos Nunes, A., Doyle, V. P., Castlebury, L. A., & Câmara, M. P. S. (2022). Elucidating the Colletotrichum spp. diversity responsible for papaya anthracnose in Brazil. Fungal Biology, 126(10), 623-630. https://doi.org/10.1016/j.funbio.2022.08.001
Shahbazi, Y. (2018). Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries. International Journal of Biological Macromolecules, 112, 264-272. https://doi.org/10.1016/j.ijbiomac.2018.01.186
Serpa, M. F. P., Castricini, A., Mitsobuzi, G. P., Martins, R. N., Batista, M. F., & Almeida, T. H. (2014). Mango conservation using cassava starch prepared with extract of clove and cinnamon. Ceres, 61(6), 975-982. https://doi.org/10.1590/0034-737X201461060013
Silva, A. C. G., Silva, N. S., & Sousa, F. F. (2019). Post-harvest of yellow passion fruit with cassava inner bark starch-based coatings. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 14(2), 238-245. https://doi.org/10.18378/rvads.v14i2.6220
Taveira, G. B., Mello, E. O., Simão, T. L. B. V., Cherene, M. B., Carvalho, A. O., Muzitano, M. F., Lassounskaia, E., Pireda, S., Miguel, E. C., Basso, L. G. M., Cunha, M., Motta, O. V., & Gomes, V. M. (2022). A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochimica et Biophysica Acta (BBA)-General Subjects, 1866(11), 130218. https://doi.org/10.1016/j.bbagen.2022.130218
Trigo, J. M., Albertini, S., Spoto, M. H. F., Sarmento, S. B. S., Reyes, A. E. L., & Sarriés, G. A. (2012). Effect of edible coatings on the preservation of fresh cut papayas. Brazilian Journal of Food Technology, 15(2), 125-133. https://doi.org/10.1590/S1981-67232012005000005
Universidade Federal de Pernambuco (UFPE) (2024). Micoteca URM. Culture Collection of the Mycology. Department of the Biosciences Center of the UFPE. Retrieved from https://www.ufpe.br/micoteca
Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283. https://doi.org/10.1016/j.carbpol.2017.02.001