Studying and enhancing the hypoglycemic effect of Pingyang Yellow Soup and preliminary exploration of its internal mechanisms in a zebrafish model


  • Jun LIU Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Biqin DU The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
  • Qiantu XIE Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Bin XU Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Jie LIU Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Yingfeng WANG Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Miju SU Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Rong TAN Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Liqin YE Pingyang Agricultural and Rural Bureau, Wenzhou, China.



Pingyang Yellow Soup, zebrafish, diabetes, hypoglycemic effects


Yellow tea belongs to specialty tea, and it is loved by consumers because of its unique flavor and taste. Herein, Pingyang Yellow Soup (PYS, a kind of yellow tea) was chosen. In this study, we investigated the effects of PYS on the hypoglycemic effect of the zebrafish model and explored its potential mechanism of action. Results showed that PYS had very strong and definite hypoglycemic biological activity. Meanwhile, different water/material ratios, extraction temperatures, and extraction times had significant influence on the hypoglycemic performance of PYS, and the strength of influence was ranked as extraction temperature > extraction time > water/material ratio. In addition, results showed that the removal rate of tea polyphenols (TPs) in PYS had a strong linear correlation to the degree of decreased hypoglycemic performance, indicating the hypoglycemic performance was closely related to TPs levels. The comprehensive analysis revealed that the nor-sugar rate of PYS had a variety of regression relationships with its components, and the best hypoglycemic performance does not require the highest content levels of each component but depends on what it is, and there exists a relative optimal value, which provides basic information for exploring the internal mechanism of action of hypoglycemic effects and developing functional tea drinks of PYS.


Não há dados estatísticos.


Adu, M. D., Bondonno, C. P., Parmenter, B. H., Sim, M., Davey, R. J., Murray, K., Radavelli-Bagatini, S., Magliano, D. J., Daly, R. M., Shaw, J. E., Lewis, J. R., Hodgson, J. M., & Bondonno, N. P. (2022). Association between non-tea flavonoid intake and risk of type 2 diabetes: the Australian diabetes, obesity and lifestyle study. Food and Function, 13(8), 4459-4468.

Alam, K. M. M., Huda, M. K., & Chowdhury, M. A. M. (2020). Comparative Evaluation for Minerals and Nutritional Elements in Seventeen Marketed Brands of Black Tea of Bangladesh. Food Science and Technology, 8(1), 10-22.

Balci, F., & Özdemir, F. (2016). Influence of shooting period and extraction conditions on bioactive compounds in turkish green tea. Food Science and Technology, 36(4), 737-743.

Bose, M., Lambert, J. D., Ju, J., Reuhl, K. R., Shapses, S. A., & Yang, C. S. (2008). The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. Journal of Nutrition, 138(9), 1677-1683.

Collins, Q. F., Liu, H. Y., Pi, J., Liu, Z., Quon, M. J., & Cao, W. (2007). Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. Journal of Biological Chemistry, 282(41), 30143-30149.

Farahmandfar, R., & Aziminezhad, H. (2021). Effect of withering, rolling, fermentation and drying steps of gilan's black tea on its phenolic content and antioxidant properties. Food Science and Technology, 18(112), 1-10.

Frayer, N., & Kim, Y. (2020). Caffeine intake during pregnancy and risk of childhood obesity: a systematic review. International Journal of MCH and AIDS, 9(3), 364-380.

Hossain, S. J., Kato, H., Aoshima, H., Yokoyama, T., Yamada, M., & Hara, Y. (2002). Polyphenol-induced inhibition of the response of na(+)/glucose cotransporter expressed in Xenopus oocytes. Journal of Agricultural and Food Chemistry, 50(18), 5215-5219.

Hu, S., Luo, L., Bian, X., Liu, R. H., Zhao, S., Chen, Y., Sun, K., Jiang, J., Liu, Z., Zeng, L. (2022). Pu-erh tea restored circadian rhythm disruption by regulating tryptophan metabolism. Journal of Agricultural and Food Chemistry, 70(18), 5610-5623.

Huang, J., Zhang, Y., Zhou, Y., Zhang, Z., Xie, Z., Zhang, J., & Wan, X. (2013). Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. Journal of Agricultural & Food Chemistry, 61(36), 8565-8572.

Jaimez-Ordaz, J., Contreras-Lopez, E., Hernandez-Sanchez, T., González-Olivares, L. G., Añorve-Morga, J., & Ramírez-Godínez, J. (2021). Comparative evaluation of four extraction methods of antioxidant compounds from decatropis bicolor in aqurous medium applting response surface design. Molecules, 26(4), 1042.

Li, X. P., Li, S. Y., Chen, M., Wang, J., Xie, B., & Sun, Z. (2018). (-)-epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of pxr/car-mediated phase Ⅱ metabolism in diabetic mice. Food & Function, 9(9), 4651-4663.

Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., Shi, B., Sun, H., Ba, J., Chen, B., Du, J., He, L., Lai, X., Li, Y., Chi, H., Liao, E., Liu, C., Liu, L., Tang, X., Tong, N., Wang, G., Zhang, J. A., Wang, Y., Xue, Y., Yan, L., Yang, J., Yang, L., Yao, Y., Ye, Z., Zhang, Q., Zhang, L., Zhu, J., Zhu, M., Ning, G., Mu, Y., Zhao, J., Teng, W., & Shan, Z. (2020). Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ Clinical Research, 369, m997.

Lin, L., Huang, H. C., & Lin, J. K. (2007). Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of Lipid Research, 48(11), 2334-2343.

Lin, X., Wu, L., Wang, X., Yao, L., & Wang, L. (2020). Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100284.

Liu, J., Li, Q., & Tan, R. (2021). Evaluation and Comparison of the Hypoglycemic Effects of the Aqueous Extract of Mulberry Leaves and Gynostemma Pentaphyllum Leaves of Zebrafish as A Model. China Tea Processing, (4), 74-82.

Liu, J., Li, Q., & Tan, R. (2022a). An exploratory study to analyse the effects of the different roles of matcha on lipid metabolism and intestinal flora regulation between normal and diabetic mice fed a high-fat diet. Food Science and Technology, 42, e25022.

Liu, J., Li, Q., & Tan, R. (2022b). Evaluation of the hypoglycemic effects of Cyclocarya paliurus based on a zebrafish biological model. Modern Food Science and Technology, 38(5), 1-7.

Liu, J., Lv, Y. J., Pan, J. X., Jiang, Y.-J., Zhang, S.-K. (2022c). Effects of tea polyphenols and EGCG on glucose metabolism and intestinal flora in diabetic mice fed a cornstarch-based functional diet. Food Science and Technology, 42, e50821.

Lu, C. H., & Hwang, L. S. (2008). Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chemistry, 111(1), 67-71.

Macena, M. D. L., Nunes, L. F. D. S., Silva, A. F. D., Pureza, I. R. O. M., Praxedes, D. R. S., Santos, J. C. F., & Bueno, N. B. (2022). Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: a systematic review with meta-analysis of randomized controlled trials. Nutrition Reviews, 80(12), 2237-2259.

Mortazavi, F., Paknahad, Z., & Hasanzadeh, A. (2018). Effect of green tea consumption on the metabolic syndrome indices in women: a clinical trial study. Nutrition & Food Science, 49(1), 32-46.

National Tea Standardization Technical Committee (2018). Determination of total polyphenols and catchins content in tea: GB/T 8313-2018. Standards Press of China.

Rubanka, K., Bessarab, A., & Terletska, V. (2020). Research on the effect of super high frequency field on green tea extraction and extract quality. Food Science and Technology, 14(3).

Şahin-Nadeem, H., Dinçer, C., Torun, M., Topuz, A., & Ozdemir, F. (2013). Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. Food Science and Technology, 52(1), 31-38.

Sun, L. J., Gidley, M. J., & Warren, F. J. (2017). The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular Nutrition & Food Research, 61(10), 1700324.

Sun, Y., Kang, K., Li, Y. L., Sang, L. X., & Chang, B. (2021). Tea polyphenols protect mice from acute ethanol-induced liver injury by modulating the gut microbiota and short-chain fatty acids. Journal of Functional Foods, 87, 104865.

Tan, R., Liu, J., & Li Q. (2022). Study on the effects of tea polyphenols and its catechin monomer on hypoglycemic effect in zebrafish model. China Tea Processing, (1), 71-78.

Vaquero, I., Marcobal, A., & Muoz, R. (2004). Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 96(2), 199-204.

Wang, J., Shen, J. M., Huang, H. Y., & Zhang, H. X. (2010). Effect of tea polyphenols on insulin secretion and Ca-(2+) concentration in rat islet. Journal of Lanzhou University (Medical Sciences), 36(4), 44-47.

Willems, M. (2018). Can you enhance exercise-induced fat oxidation with green tea drinking? Agro Food Industry Hi-Tech, 29(4), 18-19.

Wu, Y., Han, Z., Wen, M., Ho, C.-T., Jiang, Z., Wang, Y., Xu, N., Xie, Z., Zhang, J., Zhang, L., & Wan, X. (2022). Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. Food Science and Human Wellness, 11(3), 627-634.

Xu, J. Y., Wang, W. Y., Du, M. Z., He, C., Bian, J., & Du, X. (2020). A Comparative Analysis of Inhibitory Effect of Different Levels of Ya’an Tibetan Tea on Lipase. Journal of Physics: Conference Series, 1549(3), 032047.

Yang, X. P., & Kong, F. B. (2016). Effects of tea polyphenols and different teas on pancreatic alpha-amylase activity in vitro. Lwt-Food Science & Technology, 66, 232-238.

Zahidin, N. S., Zulkifli, R. M., Muhamad, I. I., Ya’akob, H., Nur, H., Shariff, A. H. M., & Saidin, S. (2018). Preliminary Study of Potential Herbal Tea, Acalypha indica and Comparison with Domestic Tea in Malaysia Market. Food Science and Technology, 6(1), 41-45.

Zhang, H., Jiang, Y., Pan, J., Lv, Y., Liu, J., Zhang, S., & Zhu, Y. (2018). Effect of tea products on the in vitro enzymatic digestibility of starch[J]. Food Chemistry, 243, 345-350.

Zhang, H. H., Liu, J., Lv, Y. J., Jiang, Y. L., Pan, J. X., Zhu, Y. J., Huang, M. G., & Zhang, S. K. (2020). Changes in the intestinal microbiota of type 2 diabetes mice in response to dietary supplementation with instant tea or matcha. Canadian Journal of Diabetes, 44(1), 44-52.

Zhao, Y., & Zhang, X. (2020). Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity. Journal of the Science of Food and Agriculture, 100(3), 897-903.

Zhou, J., Zhang, L., Meng, Q., Wang, Y., Long, P., Ho, C.-T., Cui, C., Cao, L., Li, D., & Wan, X. (2018). Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Food Function, 9, 5162-5168.




Como Citar

LIU, J., DU, B., XIE, Q., XU, B., LIU, J., WANG, Y., SU, M., TAN, R., & YE, L. (2024). Studying and enhancing the hypoglycemic effect of Pingyang Yellow Soup and preliminary exploration of its internal mechanisms in a zebrafish model. Food Science and Technology, 44.



Artigos Originais