Studying and enhancing the hypoglycemic effect of Pingyang Yellow Soup and preliminary exploration of its internal mechanisms in a zebrafish model

Autores

  • Jun LIU Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China. https://orcid.org/0000-0002-2706-7948
  • Biqin DU The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
  • Qiantu XIE Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Bin XU Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Jie LIU Pingyang Agricultural and Rural Bureau, Wenzhou, China.
  • Yingfeng WANG Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Miju SU Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Rong TAN Hangzhou Tea Research Institute, CHINA COOP; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
  • Liqin YE Pingyang Agricultural and Rural Bureau, Wenzhou, China.

DOI:

https://doi.org/10.5327/fst.123822

Palavras-chave:

Pingyang Yellow Soup, zebrafish, diabetes, hypoglycemic effects

Resumo

Yellow tea belongs to specialty tea, and it is loved by consumers because of its unique flavor and taste. Herein, Pingyang Yellow Soup (PYS, a kind of yellow tea) was chosen. In this study, we investigated the effects of PYS on the hypoglycemic effect of the zebrafish model and explored its potential mechanism of action. Results showed that PYS had very strong and definite hypoglycemic biological activity. Meanwhile, different water/material ratios, extraction temperatures, and extraction times had significant influence on the hypoglycemic performance of PYS, and the strength of influence was ranked as extraction temperature > extraction time > water/material ratio. In addition, results showed that the removal rate of tea polyphenols (TPs) in PYS had a strong linear correlation to the degree of decreased hypoglycemic performance, indicating the hypoglycemic performance was closely related to TPs levels. The comprehensive analysis revealed that the nor-sugar rate of PYS had a variety of regression relationships with its components, and the best hypoglycemic performance does not require the highest content levels of each component but depends on what it is, and there exists a relative optimal value, which provides basic information for exploring the internal mechanism of action of hypoglycemic effects and developing functional tea drinks of PYS.

Downloads

Não há dados estatísticos.

Referências

Adu, M. D., Bondonno, C. P., Parmenter, B. H., Sim, M., Davey, R. J., Murray, K., Radavelli-Bagatini, S., Magliano, D. J., Daly, R. M., Shaw, J. E., Lewis, J. R., Hodgson, J. M., & Bondonno, N. P. (2022). Association between non-tea flavonoid intake and risk of type 2 diabetes: the Australian diabetes, obesity and lifestyle study. Food and Function, 13(8), 4459-4468. https://doi.org/10.1039/D1FO04209B

Alam, K. M. M., Huda, M. K., & Chowdhury, M. A. M. (2020). Comparative Evaluation for Minerals and Nutritional Elements in Seventeen Marketed Brands of Black Tea of Bangladesh. Food Science and Technology, 8(1), 10-22. https://doi.org/10.13189/fst.2020.080102

Balci, F., & Özdemir, F. (2016). Influence of shooting period and extraction conditions on bioactive compounds in turkish green tea. Food Science and Technology, 36(4), 737-743. https://doi.org/10.1590/1678-457x.17016

Bose, M., Lambert, J. D., Ju, J., Reuhl, K. R., Shapses, S. A., & Yang, C. S. (2008). The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. Journal of Nutrition, 138(9), 1677-1683. https://doi.org/10.1093/jn/138.9.1677

Collins, Q. F., Liu, H. Y., Pi, J., Liu, Z., Quon, M. J., & Cao, W. (2007). Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. Journal of Biological Chemistry, 282(41), 30143-30149. https://doi.org/10.1074/jbc.m702390200

Farahmandfar, R., & Aziminezhad, H. (2021). Effect of withering, rolling, fermentation and drying steps of gilan's black tea on its phenolic content and antioxidant properties. Food Science and Technology, 18(112), 1-10. https://doi.org/10.52547/fsct.18.112.1

Frayer, N., & Kim, Y. (2020). Caffeine intake during pregnancy and risk of childhood obesity: a systematic review. International Journal of MCH and AIDS, 9(3), 364-380. https://doi.org/10.21106/ijma.387

Hossain, S. J., Kato, H., Aoshima, H., Yokoyama, T., Yamada, M., & Hara, Y. (2002). Polyphenol-induced inhibition of the response of na(+)/glucose cotransporter expressed in Xenopus oocytes. Journal of Agricultural and Food Chemistry, 50(18), 5215-5219. https://doi.org/10.1021/jf020252e

Hu, S., Luo, L., Bian, X., Liu, R. H., Zhao, S., Chen, Y., Sun, K., Jiang, J., Liu, Z., Zeng, L. (2022). Pu-erh tea restored circadian rhythm disruption by regulating tryptophan metabolism. Journal of Agricultural and Food Chemistry, 70(18), 5610-5623. https://doi.org/10.1021/acs.jafc.2c01883

Huang, J., Zhang, Y., Zhou, Y., Zhang, Z., Xie, Z., Zhang, J., & Wan, X. (2013). Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. Journal of Agricultural & Food Chemistry, 61(36), 8565-8572. https://doi.org/10.1021/jf402004x

Jaimez-Ordaz, J., Contreras-Lopez, E., Hernandez-Sanchez, T., González-Olivares, L. G., Añorve-Morga, J., & Ramírez-Godínez, J. (2021). Comparative evaluation of four extraction methods of antioxidant compounds from decatropis bicolor in aqurous medium applting response surface design. Molecules, 26(4), 1042. https://doi.org/10.3390/molecules26041042

Li, X. P., Li, S. Y., Chen, M., Wang, J., Xie, B., & Sun, Z. (2018). (-)-epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of pxr/car-mediated phase Ⅱ metabolism in diabetic mice. Food & Function, 9(9), 4651-4663. https://doi.org/10.1039/C8FO01293H

Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., Shi, B., Sun, H., Ba, J., Chen, B., Du, J., He, L., Lai, X., Li, Y., Chi, H., Liao, E., Liu, C., Liu, L., Tang, X., Tong, N., Wang, G., Zhang, J. A., Wang, Y., Xue, Y., Yan, L., Yang, J., Yang, L., Yao, Y., Ye, Z., Zhang, Q., Zhang, L., Zhu, J., Zhu, M., Ning, G., Mu, Y., Zhao, J., Teng, W., & Shan, Z. (2020). Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ Clinical Research, 369, m997. https://doi.org/10.1136/bmj.m997

Lin, L., Huang, H. C., & Lin, J. K. (2007). Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of Lipid Research, 48(11), 2334-2343. https://doi.org/10.1194/jlr.m700128-jlr200

Lin, X., Wu, L., Wang, X., Yao, L., & Wang, L. (2020). Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284

Liu, J., Li, Q., & Tan, R. (2021). Evaluation and Comparison of the Hypoglycemic Effects of the Aqueous Extract of Mulberry Leaves and Gynostemma Pentaphyllum Leaves of Zebrafish as A Model. China Tea Processing, (4), 74-82. https://doi.org/10.15905/j.cnki.33-1157/ts.2021.04.013

Liu, J., Li, Q., & Tan, R. (2022a). An exploratory study to analyse the effects of the different roles of matcha on lipid metabolism and intestinal flora regulation between normal and diabetic mice fed a high-fat diet. Food Science and Technology, 42, e25022. https://doi.org/10.1590/fst.25022

Liu, J., Li, Q., & Tan, R. (2022b). Evaluation of the hypoglycemic effects of Cyclocarya paliurus based on a zebrafish biological model. Modern Food Science and Technology, 38(5), 1-7. https://doi.org/10.13982/j.mfst.1673-9078.2022.5.0733

Liu, J., Lv, Y. J., Pan, J. X., Jiang, Y.-J., Zhang, S.-K. (2022c). Effects of tea polyphenols and EGCG on glucose metabolism and intestinal flora in diabetic mice fed a cornstarch-based functional diet. Food Science and Technology, 42, e50821. https://doi.org/10.1590/fst.50821

Lu, C. H., & Hwang, L. S. (2008). Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chemistry, 111(1), 67-71. https://doi.org/10.1016/j.foodchem.2008.03.043

Macena, M. D. L., Nunes, L. F. D. S., Silva, A. F. D., Pureza, I. R. O. M., Praxedes, D. R. S., Santos, J. C. F., & Bueno, N. B. (2022). Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: a systematic review with meta-analysis of randomized controlled trials. Nutrition Reviews, 80(12), 2237-2259. https://doi.org/10.1093/nutrit/nuac035

Mortazavi, F., Paknahad, Z., & Hasanzadeh, A. (2018). Effect of green tea consumption on the metabolic syndrome indices in women: a clinical trial study. Nutrition & Food Science, 49(1), 32-46. https://doi.org/10.1108/NFS-03-2018-0091

National Tea Standardization Technical Committee (2018). Determination of total polyphenols and catchins content in tea: GB/T 8313-2018. Standards Press of China.

Rubanka, K., Bessarab, A., & Terletska, V. (2020). Research on the effect of super high frequency field on green tea extraction and extract quality. Food Science and Technology, 14(3). https://doi.org/10.15673/fst.v14i3.1794

Şahin-Nadeem, H., Dinçer, C., Torun, M., Topuz, A., & Ozdemir, F. (2013). Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. Food Science and Technology, 52(1), 31-38. https://doi.org/10.1016/j.lwt.2013.01.007

Sun, L. J., Gidley, M. J., & Warren, F. J. (2017). The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular Nutrition & Food Research, 61(10), 1700324. https://doi.org/10.1002/mnfr.201700324

Sun, Y., Kang, K., Li, Y. L., Sang, L. X., & Chang, B. (2021). Tea polyphenols protect mice from acute ethanol-induced liver injury by modulating the gut microbiota and short-chain fatty acids. Journal of Functional Foods, 87, 104865. https://doi.org/10.1016/j.jff.2021.104865

Tan, R., Liu, J., & Li Q. (2022). Study on the effects of tea polyphenols and its catechin monomer on hypoglycemic effect in zebrafish model. China Tea Processing, (1), 71-78. https://doi.org/10.15905/j.cnki.33-1157/ts.2022.01.007

Vaquero, I., Marcobal, A., & Muoz, R. (2004). Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 96(2), 199-204. https://doi.org/10.1016/j.ijfoodmicro.2004.04.004

Wang, J., Shen, J. M., Huang, H. Y., & Zhang, H. X. (2010). Effect of tea polyphenols on insulin secretion and Ca-(2+) concentration in rat islet. Journal of Lanzhou University (Medical Sciences), 36(4), 44-47. https://doi.org/10.13885/j.issn.1000-2812.2010.04.013

Willems, M. (2018). Can you enhance exercise-induced fat oxidation with green tea drinking? Agro Food Industry Hi-Tech, 29(4), 18-19.

Wu, Y., Han, Z., Wen, M., Ho, C.-T., Jiang, Z., Wang, Y., Xu, N., Xie, Z., Zhang, J., Zhang, L., & Wan, X. (2022). Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. Food Science and Human Wellness, 11(3), 627-634. https://doi.org/10.1016/j.fshw.2021.12.019

Xu, J. Y., Wang, W. Y., Du, M. Z., He, C., Bian, J., & Du, X. (2020). A Comparative Analysis of Inhibitory Effect of Different Levels of Ya’an Tibetan Tea on Lipase. Journal of Physics: Conference Series, 1549(3), 032047. https://doi.org/10.1088/1742-6596/1549/3/032047

Yang, X. P., & Kong, F. B. (2016). Effects of tea polyphenols and different teas on pancreatic alpha-amylase activity in vitro. Lwt-Food Science & Technology, 66, 232-238. https://doi.org/10.1016/j.lwt.2015.10.035

Zahidin, N. S., Zulkifli, R. M., Muhamad, I. I., Ya’akob, H., Nur, H., Shariff, A. H. M., & Saidin, S. (2018). Preliminary Study of Potential Herbal Tea, Acalypha indica and Comparison with Domestic Tea in Malaysia Market. Food Science and Technology, 6(1), 41-45. https://doi.org/10.13189/fst.2018.060105

Zhang, H., Jiang, Y., Pan, J., Lv, Y., Liu, J., Zhang, S., & Zhu, Y. (2018). Effect of tea products on the in vitro enzymatic digestibility of starch[J]. Food Chemistry, 243, 345-350. https://doi.org/10.1016/j.foodchem.2017.09.138

Zhang, H. H., Liu, J., Lv, Y. J., Jiang, Y. L., Pan, J. X., Zhu, Y. J., Huang, M. G., & Zhang, S. K. (2020). Changes in the intestinal microbiota of type 2 diabetes mice in response to dietary supplementation with instant tea or matcha. Canadian Journal of Diabetes, 44(1), 44-52. https://doi.org/10.1016/j.jcjd.2019.04.021

Zhao, Y., & Zhang, X. (2020). Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity. Journal of the Science of Food and Agriculture, 100(3), 897-903. https://doi.org/10.1002/jsfa.10049

Zhou, J., Zhang, L., Meng, Q., Wang, Y., Long, P., Ho, C.-T., Cui, C., Cao, L., Li, D., & Wan, X. (2018). Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Food Function, 9, 5162-5168. https://doi.org/10.1039/C8FO01429A

Downloads

Publicado

2024-04-15

Como Citar

LIU, J., DU, B., XIE, Q., XU, B., LIU, J., WANG, Y., SU, M., TAN, R., & YE, L. (2024). Studying and enhancing the hypoglycemic effect of Pingyang Yellow Soup and preliminary exploration of its internal mechanisms in a zebrafish model. Food Science and Technology, 44. https://doi.org/10.5327/fst.123822

Edição

Seção

Artigos Originais