Effect of the osmotic and adiabatic dehydration process on the nutritional composition of tomatoes
DOI:
https://doi.org/10.5327/fst.00030%20Palavras-chave:
Sweet Grape tomato, dehydration, carotenoids, lycopene, high-performance liquid chromatographyResumo
The tomato is a horticultural product of commercial importance in Brazil. The Sweet Grape, a hybrid of mini-tomato with a sweeter taste, can be consumed as a side dish, appetizer, or in natura. The main commercialization difficulties are related to the post-harvest losses. For being highly perishable, the dehydration process is a great alternative; however, less has been studied about the processing of the hybrid variety Sweet Grape. Therefore, this study aimed at studying the drying technique in two tomato varieties, Italian and Sweet Grape, by analyses of chemical and mineral composition and antioxidants (phenolics, lutein, beta-carotene, lycopene, and ascorbic acid), the tomatoes in natura, and the dehydrated products. In general, the processing performed in the Sweet Grape tomatoes preserved the parameters better, compared with the Italian tomatoes. The results allow the conclusion that dehydration maintained the nutritional quality when performed in the Sweet Grape tomatoes.
Downloads
Referências
Abreu, W. C., Barcelos, M. D. F. P., Lopes, C. D. O., Malfitano, B. F., Pereira, M. C. D. A., & Boas, E. V. D. B. V. (2011). Características físicas e químicas de tomates secos em conserva. Boletim do Centro de Pesquisa de Processamento de Alimentos, 31(2), 237-244.
Abushita, A. A., Daood, H. G., & Biacs, P. A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48(6), 2075-2081. https://doi.org/10.1021/jf990715p
Almeida-Muradian, L. B., & Penteado, M. D. V. C. (2003). Carotenóides. In M. D. V. C. Penteado (ed.), Vitaminas: aspectos nutricionais, bioquímicos, clínicos e analíticos (pp. 3-52). Manole.
American Oil Chemists Society (AOCS). (2003). Tentative and official methods of analyses (vol. 1). Boulder.
Arruda, M., Carvalho, L., Neto, J., Jacomino, A., & Melo, P. C. (2005). Caracterização físico-química de híbridos de tomate de crescimento indeterminado em função do espaçamento e número de ramos por planta. Revista Brasileira de Agrociências, 11(3), 295-298.
Asp, N. G., Johansson, C. G., Hallmer, H., & Siljestron, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fiber. Journal of Agricultural and Food Chemistry, 31(3), 476-482. https://doi.org/10.1021/jf00117a003
Association Of Analytical Chemists (AOAC) (2005). Official Methods of Analysis (18th ed.). Gaithersburg.
Association Of Analytical Chemists (AOAC) (2006). Official Methods of Analysis (18th ed.). Gaithersburg.
Benassi, M. T., & Antunes, A. J. A. (1988). Comparison of meta-phosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31(4), 507-513.
Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964-973. https://doi.org/10.1021/jf072990e
Carvalho, O. T. (2007). Carotenóides e composição centesimal de ervilhas (Pisum sativum L.) cruas e processadas [dissertation]. Universidade de São Paulo.
Chang, C. H., Lin, H. Y., Chang, C. Y., & Liu, Y. C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot air dried tomatoes. Journal of Food Engineering, 77(3), 478-485. https://doi.org/10.1016/j.jfoodeng.2005.06.061
Correia, A. F. K., Loro, A. C., Zanatta, S., Spoto, M. H. F., & Vieira, T. M. F. S. (2015). Effect of temperature, time, and material thickness on the dehydration process of tomato. International Journal of Food Science, 2015, 970724. https://doi.org/10.1155/2015/970724
Friedman, M. (2002). Tomato glycoalkaloids: role in the plant and in the diet. Journal of Agricultural and Food Chemistry, 50(21), 5751-5780. https://doi.org/10.1021/jf020560c
Genovese, M. I., Santos, R. J., Hassimotto, N. M. A., & Lajolo, F. M. (2003). Determinação do conteúdo de fenólicos totais em frutas. Brazilian Journal of Pharmaceutical Sciences, 39(3), 167-169.
Giovanelli, G., Zanoni, B., Lavelli, V., & Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135-141. https://doi.org/10.1016/S0260-8774(01)00095-4
Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J., & Willett, W. C. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. Journal of the National Cancer Institute, 94(5), 391-398. https://doi.org/10.1093/jnci/94.5.391
Hallmann, E. (2012). The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. Journal of Science Food and Agriculture, 92(14), 2840-2848. https://doi.org/10.1002/jsfa.5617
Junqueira, A. H., Peetz, M. S., & Onoda, S. M. (2011). Sweet Grape: Um modelo de inovação na gestão da cadeia de produção e distribuição de hortaliças diferenciadas no Brasil. ESPM, Central de Cases, 19 p.
Kurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MS characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110(2), 522-530. https://doi.org/10.1016/j.foodchem.2008.02.022
Lavelli, V., Hippeli, S., Peri, C., & Elstner, E. F. (1999). Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. Journal of Agricultural and Food Chemistry, 47(9), 3826-3831. https://doi.org/10.1021/jf981372i
Machado, M. A. R., Oliveira, G. R. M., & Portas, C. A. M. (2003). Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant and Soil, 255(1), 333-341.
Markovic, K., Hruskar, M., & Vahcic, N. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutrition Research, 26(11), 556-560. https://doi.org/10.1016/j.nutres.2006.09.010
Mayer-Miebach, E., Behsnilian, D., Regier, M., & Schuchmann, H. P. (2005). Thermal processing of carrots: lycopene stability and isomerisation with regard to antioxidant potential. Food Research International, 38(8-9), 1103-1108. https://doi.org/10.1016/j.foodres.2005.03.018
Moritz, B., & Tramonte, V. L. C. (2006). Biodisponibilidade do licopeno. Revista de Nutrição, 19(2), 265-273. https://doi.org/10.1590/S1415-52732006000200013
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. ILSI Press.
Rodriguez-Amaya, D. B., Kimura, M., & Amaya-Farfan, J. (2008). Fontes brasileiras de carotenóides: Tabela brasileira de composição de carotenóides em alimentos. Ministério do Meio Ambiente.
Santos, L. C., Bertolin, M. N. T., & Gianello, M. (2003). Licopeno e câncer de próstata. In Morais, F. L. D. (ed.), Carotenoides: características biológicas e químicas (pp. 27-30). UnB.
Stahl, W., & Sies, H. (1996). Lycopene: a biologically important carotenoid for humans? Archives of Biochemistry and Biophysics, 336(1), 1-9. https://doi.org/10.1006/abbi.1996.0525
Souza, N. (2007). Tomate mais doce sem acidez. O Estado de São Paulo.
Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B., Bertow, S., & Ebeler, S. E. (2001). Processing effects on lycopene content and antioxidant activity of tomatoes. Journal of Agricultural and Food Chemistry, 49(8), 3713-3717. https://doi.org/10.1021/jf0102721
Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1999). Oxidative heat damage of tomato halves as affected by drying. Food Research International, 31(5), 395-401. https://doi.org/10.1016/S0963-9969(98)00102-1