Manual and automated aeration strategies during storage of sunflower grains in silos

Autores

DOI:

https://doi.org/10.5327/fst.00275%20

Palavras-chave:

Helianthus annuus L, thermometry, sensors, thermocouples

Resumo

The objective of this study was to identify the influence of manual and automated aeration strategies guided by thermometry systems with thermocouples and digital sensors, respectively, on the quality of sunflower grains stored at different heights in a metal silo. The experiment was conducted in a storage unit in two vertical metal silos. Aeration in these silos was manually coordinated in the silo containing thermocouples and automated in the silo with a digital thermometry system. In addition to the grain mass temperature data, the quality of the sunflower grains was monitored for 90 days of storage at three heights in the silo (upper, middle, and lower thirds). The aeration strategies influenced the temperature of the grain mass and, consequently, the quality of the stored product, especially its moisture content. No influence of aeration strategies was identified for protein content, oil content, and iodine content of the oil of the stored sunflower grains. Automation of aeration contributes to making use of better climatic conditions to carry out the process, compared with the manual system used. The aeration strategies adopted (cooling and conservation) were efficient in reducing grain mass temperature in the automated process. The silo with automated aeration showed better conservation of the quality of the stored sunflower grains. The silo with manually controlled aeration showed an 11.55% reduction in grain moisture content. Grains stored in the middle third of the silo tend to have better quality.

Downloads

Não há dados estatísticos.

Referências

Abreu, L. A. de S., Carvalho, M. L. M. de, Pinto, C. A. G., Kataoka, V. Y., & Silva, T. T. de A. (2013). Deterioration of sunflower seeds during storage. Journal of Seed Science, 35(2), 240-247.

Adesina, S. A. (2018). Effect of processing of the proximate composition of sunflower (Helianthus annuus) seeds. Journal of Tropical Agriculture, Food, Environment and Extension, 17(3), 27-33. https://doi.org/10.4314/as.v17i3.5

Ajith, S., Pramod, S., Kumari, C. P., & Potty, V. P. (2015). Effect of storage temperatures and humidity on proximate composition, peroxide value and iodine value of raw cashew nuts. Journal of Food Science Technology, 52(7), 4631-4636. https://doi.org/10.1007/s13197-014-1476-6

Aluyor, E. O., Aluyor, P., & Ozigagu, C. E. (2009). Effect of refining on the quality and composition of groundnut oil. African Journal of Food Science, 3(8), 201-205.

Araujo, A. C. F. B., & Barbedo, C. J. (2017). Changes in dessication tolerance and respiratory rates of immature Caesalpinia echinate Lam. seeds. Journal of Seed Science, 39(2), 123-132. https://doi.org/10.1590/2317-1545v39n2167788

Bajpai, A., Kumar, Y., Singh, H., Prabhakar, P. K., & Meghwal, M. (2019). Effect of moisture content on the engineering properties of Jamun (Syzgium cuminii) seed. Journal of Food Process Engineering, 43(2), e13325. https://doi.org/10.1111/jfpe.13325

Binelo, M. O., Faoro, V., Kathatourian, O. A., & Ziganshin, B. (2019). Airflow simulation and inlet pressure profile optimization of a grain storage bin aeration system. Computers and Electronics in Agriculture, 164, e104923. https://doi.org/10.1016/j.compag.2019.104923

Bragantini, C. (2005). Alguns aspectos do armazenamento de sementes e grãos de feijão. Documento 187. Embrapa Arroz e Feijão, 28 p.

Brasil (2009). Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. MAPA, SDA.

Brasil (2011). Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 29, de 8 de junho de 2011. Diário Oficial da União.

Bustos-Vanegas, J. D., Corrêa, P. C., Zeymer, J. S., Baptestini, F. M., & Campos, R. C. (2018). Moisture sorption isotherms of quinoa seeds: thermodynamic analysis. Engenharia Agrícola, 38(6), 941-950. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n6p941-950/2018

Campos, R. C., Corrêa, P. C., Zaidan, I. R., Zaidan, U. R., & Leite, R. A. (2019). Moisture sorption isotherms of sunflower seeds: thermodynamic analysis. Ciência e Agrotecnologia, 43, e011619. https://doi.org/10.1590/1413-7054201943011619

Codex Alimentarius (1999). Standard for named vegetable oils: CXS: 210-1999. International Food Standards.

Coradi, P. C., Souza, A. E. M. de, & Borges, M. C. R. Z. (2017). Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage. Acta Scientiarum. Agronomy, 39(2), 255-266. https://doi.org/10.4025/actasciagron.v39i2.31121

Goneli, A. L. D., Corrêa, P. C., Figueiredo Neto, A., Kirsch, M. R. H., & Botelho, F. M. (2020). Static pressure drop in layers of castor bean grains. Engenharia Agrícola, 40(2), 184-191. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n2p184-191/2020

Grunvald, A. K., Carvalho, C. G. P. de, Leite, R. S., Mandarino, J. M. G., Andrade, C. A. de B., & Scapim, C. A. (2014). Predicting the oil contents in sunflower genotype seeds using near-infrared reflectance (NIR) spectroscopy. Acta Scientiarum. Agronomy, 36(2), 233-237. https://doi.org/10.4025/actasciagron.v36i2.17677

Instituto Adolfo Lutz (IAL) (2008). Métodos físico-químicos para análise de alimentos (4ª ed.). IAL.

Lamas, D. L., Constenla, D. T., & Raab, D. (2018). Effect of degumming process on physicochemical properties of sunflower oil. Biocatalysis and Agricultural Biotechnology, 6, 138-143. https://doi.org/10.1016/j.bcab.2016.03.007

Li, X., Han, Z., Lin, Q., Wu, Z., Chen, L., & Zhang, Q. (2020). Smart cooling-aeration guided by aeration window model for paddy stored in concrete silos in a depot of Guangzhou, China. Computers and Electronics in Agriculture, 173, e105452. https://doi.org/10.1016/j.compag.2020.105452

Lopes, D. de C., & Steidle Neto, A. J. (2019). Effects of climate change on the aeration of stored bean in Minas Gerais State, Brazil. Biosystems Engineering, 188, 155-164. https://doi.org/10.1016/j.biosystemseng.2019.10.010

Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2020). Mathematical modelling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds. LWT – Food Science and Technology, 131, e109727. https://doi.org/10.1016/j.lwt.2020.109727

Marmesat, S., Morales, A., Velasco, J., Ruiz-Méndez, M. V., & Dobarganes, M. C. (2009). Relationship between changes in peroxide value and conjugated dienes during oxidation of sunflower oils with different degree of unsaturation. Grasas y Aceites, 60(2), 155-160. https://doi.org/10.3989/gya.096908

Mohapatra, D., Kumar, S., Kotwaliwale, N., & Singh, K. K. (2017). Critical factors responsible for fungi growth in stored food grains and non-Chemical approaches for their control. Industrial Crops & Products, 108, 162-182. https://doi.org/10.1016/j.indcrop.2017.06.039

Moureu, S., Violleau, F., Haimoud-Lekhal, D. A., & Calmon, A. (2016). Influence of storage temperature on the composition and the antibacterial activity of ozonized sunflower oil. Ozone: Science & Engineering, 38(2), 143-149. https://doi.org/10.1080/01919512.2015.1128319

Nascimento, A. P. S., Barros, S. L., Santos, N. C., Araújo, A. J. de B., Cavalcanti, A. S. R. de R. M., & Duarte, M. E. M. (2018). Secagem convectiva e influência da temperatura nas propriedades físico-químicas das amêndoas de girassol comercial. Revista Brasileira de Produtos Agroindustriais, 20, 227-238.

Naz, S., Sheikh, H., Siddiqi, R., & Sayeed, S. A. (2004). Oxidative stability of olive, corn and soybean oil under different conditions. Food Chemistry, 88(2), 253-259. https://doi.org/10.1016/j.foodchem.2004.01.042

Othman, S. H., Edwal, S. A. M., Risyon, N. P., Basha, R. K., & Talib, R. A. (2017). Water sorption and water permeability properties of edible film made from potato peel waste. Food Science and Technology, 37(Suppl. 1), 63-70. https://doi.org/10.1590/1678-457X.30216

Panigrahi, S. S., Singh, C. B., & Fielke, J. (2020). CFD modelling of physical velocity and anisotropic resistance components in a peaked stored grain with aeration ducting systems. Computers and Electronics in Agriculture, 179, e105820. https://doi.org/10.1016/j.compag.2020.105820

Popa, M., Glevitzky, I., Dumitrel, G. A., Glevitzky, M., & Popa, D. (2017). Study on peroxide values for different oils and factors affecting the quality of sunflower oil. Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, VI, 137-143.

Rocha, J. C. da, Pohndorf, R. S., Meneghetti, V. L., Oliveira, M. de, & Elias M. C. (2020). Effects of mass compaction on airflow resistance through paddy rice grains. Biosystems Engineering, 194, 28-39. https://doi.org/10.1016/j.biosystemseng.2020.03.007

Silva, D. J., & Queiroz, A. C. (2002). Análises de alimentos: métodos químicos e biológicos (3ª ed.). Editora UFV.

Smaniotto, T. A. de S., Resende, O., Sousa, K. A. de, Campos, R. C., Guimarães, D. N., & Rodrigues, G. B. (2017). Physical properties of sunflower seeds during drying. Semina: Ciências Agrárias, 38(1), 157-164. https://doi.org/10.5433/1679-0359.2017v38n1p157

Steidle Neto, A. J., & Lopes, D. de C. (2015). Thermistor based system for grain aeration monitoring and control. Computers and Eletronics in Agriculture, 116, 45-54. https://doi.org/10.1016/j.compag.2015.06.004

Tinto, W. F., Elufioye, T. O., & Roach, J. (2017). Waxes. In: S. Badal & R. Delgoda (Eds.), Pharmacognosy (pp. 443-455). Academic Press.

Downloads

Publicado

2025-03-24

Como Citar

FERREIRA JUNIOR, W. N., RESENDE, O., SOUSA, K. A. de, COSTA, L. M., ALMEIDA, A. B. de, OLIVEIRA, D. E. C. de, & QUIRINO, J. R. (2025). Manual and automated aeration strategies during storage of sunflower grains in silos. Food Science and Technology, 45. https://doi.org/10.5327/fst.00275

Edição

Seção

Artigos Originais